
Orange3-Textable Documentation
Release 3.1.11

LangTech Sarl

Jun 15, 2021

Contents

1 Contents 3
1.1 Introduction . 3
1.2 Textable’s basics . 12
1.3 Advanced topics . 39
1.4 Cookbook . 50
1.5 Case studies . 90
1.6 Reference . 91

i

ii

Orange3-Textable Documentation, Release 3.1.11

Welcome to the documentation of Orange Textable.

This documentation is divided in five main sections (see detailed contents below):

• The Introduction offers a brief overview of what Orange Textable can do, as well as how it should be installed
and configured. This is what you should read first if you are unsure whether Orange Textable is the right piece
of software for your needs or how to set it up.

• Section Textable’s basics is a tutorial that introduces the basic concepts underlying Orange Textable and its main
usage patterns. This should be your first reading once you’ve determined that Orange Textable can be useful to
you and installed it.

• Section Advanced topics enables the advanced user to benefit from more complex text queries using regex and
xml markups. This part implies a solid knowledge of the above Basics section.

• In the Cookbook section, you’ll find a number of concise, illustrated recipes describing how to perform various
basic tasks with Orange Textable. When starting a new project, you might want to skim through this section in
case some elementary operation you need is listed there.

• Section Case studies presents several illustrations of the application of Orange Textable to more complex and
interesting problems in text data analysis.

• The Reference is an exhaustive explanation of the role and effect of every component of Orange Textable’s
interface. The purpose of this part of the documentation is to help you find a specific piece of information about
Orange Textable’s operation when using it for your own projects.

Contents 1

Orange3-Textable Documentation, Release 3.1.11

2 Contents

CHAPTER 1

Contents

1.1 Introduction

Orange Textable is an open-source add-on bringing advanced text-analytical functionalities to the Orange Canvas data
mining software package (itself open-source). It essentially enables users to build data tables on the basis of text data,
by means of a flexible and intuitive interface. Look at the following example to see it in typical action.

Orange Textable was designed and implemented by LangTech Sàrl on behalf of the department of language and
information sciences (SLI) at the University of Lausanne (see Credits and How to cite Orange Textable).

1.1.1 Features

Orange Textable offers the following features:

• text data import from keyboard, files, or urls

• support for various encodings, including Unicode

• standard preprocessing and custom recoding (based on regular expressions)

• segmentation and annotation of various text units (letters, words, etc.)

• ability to extract and exploit XML-encoded annotations

• automatic, random, or arbitrary selection of unit subsets

• unit context examination using concordance and collocation tables

• calculation of frequency and complexity measures

• recoded text data and table export

1.1.2 Illustration: mining Humanist

The following example is meant to show what Orange Textable typically does, without considering (for now) every
detail of how it does it.

3

http://orange.biolab.si/
http://langtech.ch
http://www.unil.ch/sli
http://www.unil.ch/sli
http://www.unil.ch

Orange3-Textable Documentation, Release 3.1.11

In a paper reflecting on terminology in the field of Digital Humanities1, Patrik Svensson compares the evolution of the
frequency of expressions Humanities Computing and Digital Humanities over 20 years of archives of the Humanist
discussion group. He uses these figures to show that while the former denomination remains prevalent over these two
decades, the latter has been quickly gaining ground since the 2000s.

The same experiment can be run with Orange Textable, by building a “visual program” like the one shown on figure 1
below:

Fig. 1: Figure 1: Mining Humanist with an Orange Textable schema.

Such a program is called a schema. Its visible part consists of a network of interconnected units called widget instances.
Each instance belongs to a type, e.g. URLs, Recode, Segment, and so on. Widgets are the basic blocks with which
a variety of text analysis applications can be built. Each corresponds to a fundamental operation, such as “import
data from an online source” (URLs) or “replace specific text patterns with others” (Recode) for example. Connections
between instances determine the flow of data in the schema, and thus the order in which operations are carried on.
Several parallel paths can be constructed, as demonstrated here by the Recode instance, which sends data to Segment
as well as Count.

Widget instances can (and indeed must) be individually parameterized in order to “fine-tune” their operation. For
example, double-clicking on the Recode instance of figure 1 above displays the interface shown on figure 2 below.
What this particular configuration means is that every line beginning with symbol | or > (Regex field) should be
replaced with an empty string (Replacement string): in other words, remove those lines that are marked as being part
of a reply to another message. There is a fair amount of variation between widget interfaces, but regular expressions
play an important role in many of them and Orange Textable’s flexibility owes a lot to them.

After executing the schema of figure 1 above, the resulting frequencies can be viewed by double-clicking on the Data
Table instance, whose interface is shown on figure 3 below. On the whole, these figures lend themselves to the same
interpretation as that of Patrik Svensson, but they differ wildly from the frequencies he reports. This might be explained
by the fact that, in the present illustration, we have used preprocessed data made available on the Humanist website,
or it might be that we have not processed the data exactly like Svensson did. The user can always refer to the Orange
Textable schema (including the parameters of each instance) to understand exactly the operations that it performs.2 In

1 Svensson, P. (2009). Humanities Computing as Digital Humanities. Digital Humanities Quarterly 3(3). Available here.
2 The schema can be downloaded from here. Note that two decades of Humanist archives weigh dozens of megabytes and that retrieving these

data from the Internet can take a few minutes depending on bandwidth. Please be patient if Orange Textable appears to be stalled when the schema
is being opened.

4 Chapter 1. Contents

http://dhhumanist.org/
http://dhhumanist.org/
http://dhhumanist.org/text.html
http://digitalhumanities.org/dhq/vol/3/3/000065/000065.html

Orange3-Textable Documentation, Release 3.1.11

Fig. 2: Figure 2: Interface of the Recode widget.

this sense, Orange Textable does not only attempt to make the construction of text analysis programs easier; it aims to
make communicating and understanding such programs easier.

1.1.3 Installation

Python v2.7 and Orange Canvas v2.7 must imperatively be installed before Orange Textable. Please note that Orange
Textable is not compatible with Orange 3 at the time of writing. After installation, Orange Textable appears in the
form of an additional tab in Orange Canvas.

The installation procedure is slightly different on Windows and MacOS X.1

Windows installation

1. On the Orange 2.7 download page, download the software installer by following the Orange 2.7 installer for
Windows link.

2. Execute the Orange Canvas installer and click Ok at each stage (including the stages of the installation of Python
modules).

3. Start Orange Canvas then select menu Options > Add-ons. . . (see figure 1).

4. In the window which has opened (see figure 2), click on Refresh list, check the Orange-Textable box then the
Ok button (twice).

If step 4 was carried out correctly, the Orange Textable tab appears in the list on the left of the window of Orange
Canvas after having exited and restarted the program.

1 Although several users have reported successful installation on Linux, it has not been specifically tested.

1.1. Introduction 5

http://orange.biolab.si/orange2/

Orange3-Textable Documentation, Release 3.1.11

Fig. 3: Figure 3: Monitoring the frequency of Humanities Computing vs. Digital Humanities.

Fig. 4: Figure 1: Opening the Add-ons management dialog in Orange Canvas.

6 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 5: Figure 2: Orange Textable marked for installation.

1.1. Introduction 7

Orange3-Textable Documentation, Release 3.1.11

Only if step 4 was not correctly carried out:

5. Go to PyPI to download the Orange Textable Windows installer (MS Windows installer, .exe file).

6. Execute the Orange Textable installer and click on Ok for each stage.

If install was completed without issues but nothing happens when trying to launch the application:

Try to follow the steps described here.

MacOS X installation

1. On the Orange 2.7 download page, download the software installer by following the Orange 2.7 bundle for OSX
link.

2. In the window that opens at the end of the download, drag the Orange Canvas icon and drop it over the Applica-
tions folder icon.

3. Start Orange Canvas then select menu Options > Add-ons. . . (see figure 1).

Fig. 6: Figure 1: Opening the Add-ons management dialog in Orange Canvas.

4. In the window which has opened (see figure 2), click on Refresh list, check the Orange-Textable box then the
Ok button (twice).

If step 4 was carried out correctly, the Orange Textable tab appears in the list on the left of the window of Orange
Canvas after having exited and restarted the program.

Only if step 4 was not correctly carried out:

5. Go to PyPI to download the source distribution of Orange Textable (.tar.gz file).

6. Decompress the archive then open a Terminal and navigate to the decompressed archive (see below for more
details on this step). Then enter the following instruction:

python setup.py install

NB: if this process fails, it is sometimes possible to resolve the problem by replacing the instruction with this
one:

/Applications/Orange.app/Contents/MacOS/python setup.py install

In case of difficulty in “opening a Terminal and navigating to the decompressed archive. . . ”:

a. Drag and drop on the desktop the Orange-Textable-X file (where X is the version number, e.g. “1.5”) which
can be found in the downloaded archive.

b. In Finder > Applications > Utilities, double-click on Terminal.

c. In the Terminal, correctly enter the instruction:

8 Chapter 1. Contents

https://pypi.python.org/pypi/Orange-Textable
http://bit.ly/1P07vkg
http://orange.biolab.si/orange2/
https://pypi.python.org/pypi/Orange-Textable

Orange3-Textable Documentation, Release 3.1.11

Fig. 7: Figure 2: Orange Textable marked for installation.

1.1. Introduction 9

Orange3-Textable Documentation, Release 3.1.11

cd Desktop/Orange-Textable-X

(where X still is the version number).

d. Then enter the instruction:

python setup.py install

(or if necessary, the alternative instruction shown here above).

1.1.4 Configuration

Although this is by no means required for using Orange Textable, schemas created with Orange Canvas tend to be
easier to read after deactivating the display of channel names on widget connections. This can be done using the
Settings dialog of Orange Canvas, accessible on Windows via the menu entry Options > Settings (see figure 1), and
on Mac OSX via the menu entry Orange > Preferences (see figure 2).

Fig. 8: Figure 1: Opening the Settings dialog on Windows.

Fig. 9: Figure 2: Opening the Settings dialog on Mac OSX.

Once the dialog has been opened, the Show channel names between widgets checkbox should be deselected, as in
figure 3.

10 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 10: Figure 3: Deactivating the display of channel names on widget connections.

1.1.5 Credits

Textable was designed and implemented by LangTech Sàrl on behalf of the department of language and information
sciences (SLI) at the University of Lausanne (Unil).

The largest part of funding was initially provided by the Unil’s Teaching innovation fund (Fonds d’innovation péda-
gogique - FIP), and led to the release of Textable v1.0 in summer 2012.

Textable’s development has continued between 2012 and 2013, still carried on by LangTech Sàrl, while the program
was being gradually integrated to courses taught at Unil’s department of SLI (where most of the tutorials that would
later become the Getting started section of this documentation have been created).

In automn 2013, Textable became a registered Orange Canvas add-on and was renamed to Orange Textable (v1.3).
This promotion has made it possible to reach a much larger pool of users, as witnessed by a steadily increasing number
of downloads.

In early 2014, Unil’s FIP has renewed its support to Orange Textable by granting a maintenance funding. This has
made it possible for LangTech Sàrl to collaborate with the creators of Orange Canvas, University of Ljubljana’s Biolab
for producing version v1.4 of Orange Textable.

In the meantime, Unil’s Faculty of Arts has granted additional funding for translating Orange Textable’s User guide
from French to English, then converting it into the electronic form you’re currently reading. Unil’s department of
language and information sciences has provided some financial support to the project in 2015, which made it possible
to handle warnings and error messages in a more user-friendly fashion in Orange Textable v1.5.2.

Besides LangTech Sàrl and Aris Xanthos who have been involved at about every step of Orange Textable’s concep-
tion, implementation, documentation, and so on, a special mention should be made to Benjamin Gay (specifications,
conception and implementation), people at Biolab (in particular Blaž Zupan and Aleš Erjavec for conception and im-
plementation work), Corinne Morey (French to English translation of the user guide, preparation of the online version
of the documentation, and creation of most cookbook recipes), Douglas Duhaime (case study design and write-up),
and many students (and a growing number of scholars) mostly at Unil for their indispensable feedback as users of
Orange Textable.

1.1. Introduction 11

http://langtech.ch
http://www.unil.ch/sli
http://www.unil.ch/sli
http://www.unil.ch
http://www.unil.ch/fip
http://www.unil.ch/fip
http://langtech.ch
http://www.unil.ch/sli
http://www.unil.ch/fip
http://langtech.ch
http://www.fri.uni-lj.si/en/laboratories/biolab/
http://www.unil.ch/lettres
http://www.unil.ch/sli
http://www.unil.ch/sli
http://langtech.ch
http://www.unil.ch/unisciences/arisxanthos
http://www.fri.uni-lj.si/en/laboratories/biolab/
http://www.unil.ch

Orange3-Textable Documentation, Release 3.1.11

1.1.6 Citing

If Orange Textable has been useful in preparing a scientific publication of yours, a citation would be a great way to
say so. Here is the relevant bibliographic reference:

Xanthos, Aris (2014). Textable: programmation visuelle pour l’analyse de données textuelles. In Actes des 12èmes
Journées internationales d’analyse statistique des données textuelles (JADT 2014), pp. 691-703. [read online]

1.2 Textable’s basics

This part of the documentation is a tutorial that introduces the basic usage patterns of Orange Textable. It is meant to be
read in the indicated order. Note that a basic familiarity with the interface of Orange Canvas is assumed; if needed,‘this
short tutorial <http://orange.biolab.si/getting-started/>‘_ should provide you with the necessary backround.

Orange Textable is mostly about taking text in input and producing tables in output. What makes the transition from
text to tables possible and hopefully easy is the concept of “segmentation”, which is at the heart of Orange Textable.

In this section, you’ll learn about segmentations and closely related topics such as strings, segments, widget labels and
annotations. First, you’ll learn how to import texts, second to segment it, third to annotate those segmentations in order
to transform it into tables. Tables enable users to analyze text data (context, count, length, variety, cooccurrences, etc).

1.2.1 Strings, segments, and segmentations

The main purpose of Orange Textable is to turn text strings into data tables. As we will see, there are several methods
for importing text strings, the simplest of which is keyboard input using widget Text Field (see also Keyboard input,
widget labelling and segmentation display or Cookbook: Import text from keyboard. Whenever a new string is im-
ported, it is assigned a unique identification number (called string index) and stays in memory as long as the widget
that imported it.

Consider the following string of 16 characters (note that whitespace counts as a character too).

Figure 1 : A simple string.

What makes the transition from text strings to data tables possible is the concept of a segmentation. What is a segmen-
tation ? A segmentation is a string analysis based on a ordered list of segments. For instance, a string like “a simple
example” above can be analyzed in many different ways: it consists of 3 words but also 16 characters, 14 letters, 6
vowels, 3 e’s, 2 mple’s, etc.

In the previous example, all the segments of a given segmentation refer to the same string. However, a segmentation
can span several strings. Thus, the segments of a segmentation can cover different strings, as in the example below,
where the segmentation “a”, “simple”, “plan” spans two strings (“a simple example” and “what’s the plan”). All
segments referring to a given string must be grouped together, in the order in which they appear in the string.

Figure 2 : A segmentation can span several strings.

See also

• Getting started: Keyboard input and segmentation display

• Cookbook: Import text from keyboard

12 Chapter 1. Contents

http://lexicometrica.univ-paris3.fr/jadt/jadt2014/01-ACTES/57-JADT2014.pdf
http://orange.biolab.si/getting-started/

Orange3-Textable Documentation, Release 3.1.11

1.2. Textable’s basics 13

Orange3-Textable Documentation, Release 3.1.11

14 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

1.2.2 Keyboard input, widget labelling and segmentation display

Typing text in a Text Field widget is the simplest way to import a string in Orange Textable. As a result, the widget
creates a segmentation with a single segment covering the entire string. (see figure 1 below):

Fig. 11: Figure 1: Typing some simple examples in widget Text Field.

Each segmentation is identified by a label which is the name of the widget that creates the segmentation. You can re-
name this widget to make the label more meaningful (see :ref: figure 2 <keyboard_input_segmentation_fig2> below):

As we will see later, a segmentation can also store annotations associated with segments.

This widget’s simplicity makes it most adequate for pedagogic purposes. Later, we will discover other, more powerful
ways of importing strings such as Text Files and URLs. Those importation widgets create a segmentation with one
segment for each imported file or URL.

1.2. Textable’s basics 15

Orange3-Textable Documentation, Release 3.1.11

Fig. 12: Figure 2: Typing an extract of Salammbô in widget :ref: Text Field and giving it a label (Flaubert).

The Display widget can be used to visualize the details of a segmentation. By default, it shows the segmentation’s
label followed by each successive segment’s address [#]_ and content. A segmentation sent by a Text Field instance
will contain a single segment covering the whole string (see figure 3 below).

By default, Display passes its input data without modification to its output connections. It is very useful for view-
ing intermediate results in an Orange Textable workflow and making sure that other widgets have processed data as
expected.

See also

• Reference: Text Field widget

• Reference: Display widget

• Cookbook: Import text from keyboard

• Cookbook: Display text content

Footnotes

[#] A segment is basically a substring of characters. Every segment has an address consisting of three elements: 1)
string index 2) initial position within the string 3) final position In the case of a simple example, address (1, 3, 8) refers
to substring simple, (1, 12, 12) to character a, and (1, 1, 16) to the entire string. The substring corresponding to a given
address is called the segment’s content.

1.2.3 Merging and segmenting

Computerized text analysis often implies consolidating various text sources into a single corpus. In the framework of
Orange Textable, this amounts to grouping segmentations together, and it is the purpose of the Merge widget.

To try out this widget, create on the canvas two instances of Text Field, an instance of Merge and an instance of Display
(see figure 1 below). Type a different string in each Text Field instance (e.g. a simple example and another example)
and assign it a distinct label (e.g. text_string and text_string2). Eventually, connect the instances as shown on figure 1.

16 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 13: Figure 3 : Viewing Salammbô in widget Display.

Fig. 14: Figure 1: Grouping a simple example with another example using widget Merge.

1.2. Textable’s basics 17

Orange3-Textable Documentation, Release 3.1.11

The interface of widget Merge (see figure 2 below) features 4 options : 2 annotation keys; the possibility of copying
segment inputs annotations if any and the option of fusing segments that have the same adress.

Fig. 15: Figure 2: Interface of widget Merge.

We will return later to the purpose of checkbox Import labels with key, as well as Auto-number with key. Leave
them unchecked for now.

Figure 3 above shows the resulting merged segmentation, as displayed by widget Display. As can be seen, Merge
makes it easy to concatenate several strings into a single segmentation. If the incoming segmentations contained
several segments, each of them would appear in the output segmentation, in the order they have been linked to the
Merge widget.

Exercise: Can you add a new instance of Merge to the schema illustrated on figure 1 above and modify the connections
(but not the configuration of existing widgets) so that the segmentation given in figure 4 below appears in the Display
widget? (solution)

Solution: (back to the exercise)

See also

• Reference: Merge widget

• Cookbook: Merge several texts

18 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 16: Figure 3: Merged segmentation.

1.2. Textable’s basics 19

Orange3-Textable Documentation, Release 3.1.11

Fig. 17: Figure 4: The segmentation requested in the exercise.

Fig. 18: Figure 5: Solution to the exercise.

20 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

1.2.4 Segmenting data into smaller units

We have seen previously how to combine several segmentations into a single one. We will often be performing the
inverse operation: create a segmentation whose segments are parts of another segmentation’s segments. Typically, we
will be segmenting strings into words, characters, or any kind of text units that will be later counted, measured, and so
on. This is precisely the purpose of widget Segment.

To try it out, create a new schema with an instance of Text Field connected to an instance of Segment, itself connected
to an instance of Display (see figure 1 below). In what follows, we will suppose that the string typed in Text Field is a
simple example.

Fig. 19: Figure 1: A schema for testing the Segment widget

In its basic form (i.e. with Advanced settings unchecked, see figure 2 below), Segment offers four parameters in the
drop-down menu named segment type. The string can be segmented into lines, letters, words or using a regex. If
chose, the widget then looks for all matches of the regex pattern in each successive input segment, and creates for
every match a new segment in the output segmentation.

Fig. 20: Figure 2: Interface of the Segment widget, configured for word segmentation

1.2. Textable’s basics 21

Orange3-Textable Documentation, Release 3.1.11

For instance, the regex \w+ divides each incoming segment into sequences of alphanumeric character (and under-
score)–which in our case amounts to segmenting a simple example into three words. To obtain a segmentation into
letters (or to be precise, alphanumeric characters or underscores), simply use \w.

Of course, queries can be more specific. If the relevant unit is the word, regexes will often use the \b an-
chor, which represents a word boundary. For instance, words that contain less than 4 characters can be re-
trieved with \b\w{1,3}\b, those ending in -tion with \b\w+tion\b, and the inflected forms of retrieve with
\bretriev(e|es|ed|ing)\b.

With the Advanced settings checked (see figure 3 below), several regexes can be added to the list. Regexes can be
tokenized or splited, depending on your research goal. For more information, see Segment widget

See also

• Reference: Segment widget

• Cookbook: Segment text in smaller units

1.2.5 The uses of annotating segmentations

Annotations are bits of information attached to text segments. They let you go beyond what’s in the text, and extend
Orange Textable’s analytic capacities from textual content to user-provided interpretative information and metadata.

In Orange Textable, an annotation is a piece of information attached to a segment. Annotations consist of two parts
: key and value . For instance, in the now classical case of the word segmentation of a simple example (see :ref:
figure 1<uses_annotating_segmentations_fig1> below), segment simple could be associated with the annotation {part
of speech : adjective}; this annotation’s key is part of speech and its value is adjective .

Figure 1 : Annotating simple as an adjective.

A segment can have zero, one, or several annotations attached to it. The same segment could be simultaneously
associated with another annotation such as {word category : lexical} , or any {key : value} pair deemed relevant.

Figure 2 : Segments with various annotations

Note that annotations keys are unique : Since they serve to recognize various annotation values at-
tached to a single segment, annotation keys cannot be duplicated within the segment. On :ref: figure 2
<uses_annotating_segmentations_fig2> above, “simple” can only have one value at a time for key “category” .

Even though we have carefully ignored them so far, annotations play a fundamental role in text data processing and
analysis. They make it possible to go beyond the basic level of forms that are “physically” present in a text and tap
into the more abstract–and often more interesting–level of the interpretation of these forms.

For instance, the texts composing a given corpus could be annotated with respect to their genre (novel , short story ,
and so on), and the parts of these texts might be annotated with regard to their discourse type (narrative , description ,
dialogue , and so on). Such data could be exploited to study the distribution of discourse types as a function of genre,
which would be at best extremely difficult, if ever possible, without having encoded the relevant information by means
of annotations.

In the following section, we will see a simple method for creating annotations in Orange Textable using the :ref: Merge
widget, and then various ways of exploiting such annotations.

1.2.6 Merging and annotating

Whenever Textable widgets manipulate text contents, they can manipulate annotations instead: you can search for
segments attached to specific annotations, count annotations, merge data based on their annotations, etc.

22 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

1.2. Textable’s basics 23

Orange3-Textable Documentation, Release 3.1.11

24 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

1.2. Textable’s basics 25

Orange3-Textable Documentation, Release 3.1.11

Widget Merge makes it possible to convert the labels of its input segmentations into annotation values. Suppose for
instance that three instances of Text Field have been created: two instances containing a text in English, and one
containing a text in French. We might want to merge these three segmentations into a single one, where each segment
would be associated with an annotation whose key is language and whose value is either en or fr. The first step would
then be to rename each Text Field instance with the desired annotation value for this text, as shown on figure 1 below.

Fig. 21: Figure 1: Specifying annotations values using the label of Text Field instances.

The three instances of Text Field should then be connected to an instance of Merge as shown on figure 2 below.

One must still specify, in the interface of Merge, the annotation key to which values en and fr should be associated.
This can be done by entering the string language in field Import labels with key, having previously ensured that labels
would actually be converted into annotation values by checking the box at the left of this line (see figure 3 below). In
order to give a value to each string, check Auto-number with key box. As a key, you can choose text, num, author,
etc. Each segment will be given a specific number. .. _annotating_merging_fig3:

The result of these operations can be viewed using an instance of Merge, whose output is shown on figure 4 below.
For each segment in the merged segmentation, an annotation value en or fr associated with key language is displayed
between the segment’s address and its content. Note that the auto-number value offers the possibility to access each

26 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 22: Figure 2: Example schema for creating annotations with Merge.

1.2. Textable’s basics 27

Orange3-Textable Documentation, Release 3.1.11

Fig. 23: Figure 3: Importing labels as annotation values with Merge.

28 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

segment by using the drop-down menu Go to segment. .. _annotating_merging_fig4:

See also

• Reference: Text Field widget

• Reference: Merge widget

1.2.7 From segmentations to tables

The main purpose of Orange Textable is to build tables based on texts. Central to this process are the segmentations
we have learned to create and manipulate earlier. Indeed, Orange Textable provides a number of widgets for table
construction, and they all operate on the basis of one or more segmentations.

For the time being, we will focus on the construction of frequency tables, which are very common in computerized
text analysis and which will serve as introduction to other types of tables. For the sake of simplicity, consider first the
segmentation of a simple example into letters. Counting the frequency of each letter type yields a table such as the
following:

Table 1: Table 1: Frequency of letter types.
a s i m p l e x
2 1 1 2 2 2 3 2

More often, we will be interested in comparing frequency across several contexts. For instance, if the word segmenta-
tion of a simple example is also available, it may be used together with the letter segmentation to produce a so-called
contingency table (or document–term matrix):

Table 2: Table 2: Frequency of letters within words.
a s i m p l e x

a 1 0 0 0 0 0 0 0
simple 0 1 1 1 1 1 1 0
example 1 0 0 1 1 1 2 1

In a real application, rows could correspond to the writings of an author and columns to selected prepositions, for
instance. The general idea is to determine the number of occurrences of various units in various contexts. Such
data can then be further analyzed, typically by means of a statistical test (aiming at answering the question “does the
distribution of units depend on contexts”) or a graphical representation (making it possible to visualize the attraction
or repulsion between specific units and contexts).

See also

• Reference: Table construction widgets

1.2.8 Counting segment types

Widget Count takes in input one or more segmentations and produces frequency tables such as tables 1 and 2 here.
To try it out, create a schema such as illustrated on figure 1 below. As usual, we will suppose that the Text Field
instance contains a simple example. The Segment instance is configured for letter segmentation (Regex: \w and
Widget Segment label: letters). The default configuration of Data Table (from the Data tab of Orange Canvas) needs
not be modified for this example.

1.2. Textable’s basics 29

Orange3-Textable Documentation, Release 3.1.11

Fig. 24: Figure 4: Annotations created with Merge.

30 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 25: Figure 1: Schema for testing the Count widget.

Basically, the purpose of widget Count is to determine the frequency of segment types in an input segmentation. The
label of that segmentation must be indicated in the Segmentation menu of section Units in the widget’s interface,
while other controls may be left in their default state for now (see figure 2 below). Clicking Compute then double-
clicking the Data Table instance should display essentially the same data as table 1 here (with possible variations in
the order of columns).

Note that checkbox Send automatically is unchecked by default so that the user must click on Send to trigger com-
putations. The motivation for this default setting is that table construction widgets can be quite slow when operating
on large segmentations, and it can be annoying to see computations starting again whenever an interface element is
modified.

To obtain the frequency of letter bigrams (i.e. pairs of successive letters), simply set parameter Sequence length to
2 (see table 1 below). If the value of this parameter is greated than 1, the string specified in field Intra-sequence
delimiter is inserted between successive segments for the sake of readability–which is more useful when segments are
longer than individual letters. Note that in this example, word boundaries are not taken into account–nor even known,
in fact–which is why bigrams as and ee have a nonzero frequency.

Table 3: Table 1: Letter bigram frequency.
as si im mp pl le ee ex xa am
1 1 1 2 2 2 1 1 1 1

See also

• Getting started: From segmentations to tables

• Reference: Count widget

• Reference: Table construction widgets

• Cookbook: Count unit frequency

1.2.9 Counting in specific contexts

Section Contexts of widget Count’s interface lets the user define the contexts in which units should be counted. Thus,
while the settings of section Units affect the columns of the resulting table, those of section Contexts affect its rows.

In the example of the previous section, setting Mode to No context indicated that units were to be counted globally in
the selected segmentation; as a result, the resulting table contained a single row (aside from the header row). Orange
Textable offers three other modes corresponding to three different definitions of contexts.

When Mode is set to Sliding window (see figure 1 above), context is defined as a “window” of n consecutive segments
which “slides” from the beginning to the end of the segmentation. In the case of the letter segmentation of a simple

1.2. Textable’s basics 31

Orange3-Textable Documentation, Release 3.1.11

Fig. 26: Figure 2: Counting the frequency of letter types with widget Count.

32 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 27: Figure 1: Interface of widget Count, Sliding window mode.

example (as obtained with the schema illustrated in the previous section), setting the number of segments in the window
(Window size) to 5 yields the following successive contexts: asimp, simpl, imple, mplee, pleex, and so on (see table 1
below). This mode is useful for studying the evolution of unit frequencies throughout a segmentation.

Table 4: Table 1: Frequency of letters in a “sliding window” of size 5.
a e i m l p s x

1 1 0 1 1 0 1 1 0
2 0 0 1 1 1 1 1 0
3 0 1 1 1 1 1 0 0
4 0 2 0 1 1 1 0 0
5 0 2 0 0 1 1 0 1
6 1 2 0 0 1 0 0 1
7 1 2 0 1 0 0 0 1
8 1 1 0 1 0 1 0 1
9 1 0 0 1 1 1 0 1
10 1 1 0 1 1 1 0 0

When Mode is set to Left-right neighborhood (see figure 2), context is defined on the basis of adjacent segment types
occurring to the left and/or right of each position.

For instance, setting Left context size to 1 and Right context size to 0 amounts to counting the frequency of each
segment type given the type that occurs immediately to its left. This particular table is often called “transition matrix”
(see table 2 below). The string selected in the Unit position marker string is used to indicate the position where units
appear in the context. Thus, table 2 shows that both m and s appear once immediately to the right of an a (i.e. in
context a_). To take another example, setting Right context size to 2, we would find that e occurs once both in context
l_ex and e_xa.

Table 5: Table 2: Frequency of letter (row) to letter (column) transitions.
a e i m l p s x

a_ 0 0 0 1 0 0 1 0
s_ 0 0 1 0 0 0 0 0
i_ 0 0 0 1 0 0 0 0
m_ 0 0 0 0 0 2 0 0
p_ 0 0 0 0 2 0 0 0
l_ 0 2 0 0 0 0 0 0
e_ 0 1 0 0 0 0 0 1
x_ 1 0 0 0 0 0 0 0

Finally, when Mode is set to Containing segmentation, unit types are counted whithin the segment types of a second

1.2. Textable’s basics 33

Orange3-Textable Documentation, Release 3.1.11

Fig. 28: Figure 2: Interface of widget Count, Left-right neighborhood mode.

segmentation, as illustrated in table 2 here (frequency of letters whithin words). Segment A is considered to be
contained within segment B if the following three conditions are met:

• A and B refer to the same string (their addresses have the same string index)

• A’s initial position is greater than or equal to B’s initial position

• A’s final position is lesser than or equal to B’s initial position

To try this mode out, modify the schema used in the previous section as illustrated on figure 3 below.

Fig. 29: Figure 3: Schema for testing the Count widget (Containing segmentation mode).

The first instance of Segment produces a word segmentation (Regex: \w+ and Widget label: Words) which the
second instance (the upper one) further decomposes into letters (Regex: \w and Widget label: Letters). The instance
of Count is configured as shown on figure 4 below. The resulting table is the same as table 2 here (possibly with a
different ordering of columns).

Note that in this mode, checking the Merge contexts box still restricts counting to those units that are contained

34 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 30: Figure 4: Configuration of widget Count for counting letters in words.

1.2. Textable’s basics 35

Orange3-Textable Documentation, Release 3.1.11

whithin the segments of another segmentation, but without treating each context type separately. In the case of letters
whithin words, there is no difference between this mode and mode No context (see previous section). It does however
make a difference in the case of letter bigram counting, because those bigrams that straddle a word boundary will be
excluded in this case (contrary to what can be seen in table 1 here).

See also

• Getting started: Counting segment types

• Getting started: From segmentations to tables

• Reference: Count widget

• Cookbook: Count unit frequency

• Cookbook: Count occurrences of smaller units in larger segments

• Cookbook: Count transition frequency between adjacent units

• Cookbook: Examine the evolution of unit frequency along the text

1.2.10 Tagging table rows with segments and labels

There are several situations in which annotations attached to a segment can be used in place of this segment’s content.
A particularly common case consists in using annotations for tagging the rows of a table built with an instance of
Count, Length, Variety, or Category.

Consider the example of the texts in English and French introduced here. Suppose that after having merged them into
a single segmentation with an instance of Merge (Widget Merge label: Texts ; Import labels with key: language),
we segment these three texts into letters with an instance of Segment (Regex \w, Widget Segment label: letters), as
in the schema shown on figure 1 below; both segmentations (texts and letters) can then be sent to an instance of Count
for building a table with the frequency of each letter in each text.

Fig. 31: Figure 1: Schema for counting letter frequency in three texts.

Let us suppose, first, that the instance of Count is configured as shown on figure 2 below, so that the definition of
contexts–that is, rows of the frequency table–is based on the content of the three texts.

36 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 32: Figure 2: Counting letter frequency in texts.

1.2. Textable’s basics 37

Orange3-Textable Documentation, Release 3.1.11

Here is the resulting table, disregarding possible variations in row and/or column order:

Table 6: Table 1: Letter frequency in three texts.
a t e x i n E g l s h o r u f ç

a text in English 1 2 1 1 2 2 1 1 1 1 1 0 0 0 0 0
another text in
English

1 3 2 1 2 3 1 1 1 1 2 1 1 0 0 0

un texte en
français

2 2 3 1 1 3 0 0 0 1 0 0 1 1 1 1

As can be seen, the default header of each row is the entire content of each text. While this may not be a problem in a
pedagogic example like this one, it is easy to see why it would compromise the table’s readability in a real application,
where texts often contain thousand or even millions of characters. To avoid that, it is useful to tag the table’s rows with
annotation values attached to segments rather than with these segments’ content. To that effect, the desired annotation
key must be selected in the Contexts section of widget Count’s interface.

Fig. 33: Figure 3: Tagging contexts with annotation values.

In the example of figure 3 above key language has been selected, so that the resulting frequency table looks like this:

Table 7: Table 2: Letter frequency in two text types.
a t e x i n E g l s h o r u f ç

en 2 5 3 2 4 5 2 2 2 2 3 1 1 0 0 0
fr 2 2 3 1 1 3 0 0 0 1 0 0 1 1 1 1

Besides the substitution of segment content by annotation values in row headers, this example demonstrates an im-
portant consequence of this manipulation: contexts associated with the same annotation value are, in effect, collapsed
together so that they form a single row. If this behavior is not desired, it can be avoided by assigning distinct annotation
values to the contexts that must be kept separated (e.g. en_1 and en_2).

See also

• Getting started: Annotating by merging

• Reference: Merge widget

• Reference: Segment widget

• Reference: Count widget

• Reference: Table construction widgets

38 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

1.3 Advanced topics

Doing text mining and working on text statistics softwares require the knowledge of various textual formalisms. Those
formalisms are useful to make complex queries to text databases. To benefit from the whole potential of Textable,
you’ll need to learn how to manipulate XML markup and how to use some Regular expressions (Regex).

1.3.1 Converting XML markup to annotations

Often, the best way (and sometimes the only way) to add a specific type of annotation to a text is by “manually” adding
it to the data. This is frequently done with XML markup. For instance, the text that appears in the Text Field instance
of figure 1 below is segmented into words by means of <w> tags whose type attribute indicates the “part of speech”
associated with each word (e.g. DET, NOUN, PREP, and so on).

The role of widget Extract XML is to convert XML markup into annotated segments (in the sense of Orange Textable).
In its basic version (see figure 2 below), the widget’s interface essentially requires the user to specify the name of
the XML tags that must be imported, namely w in this example. The Remove markup checkbox indicates whether
further markup (if any) detected within imported tags must be removed (there is no further markup in this example, so
that this option has no effect here).

After connecting the above Text Field and Extract XML instances, and the latter to an instance of Display, the reader
can verify that the resulting segmentation contains a segment for the content of each <w> tag in the input text, and that
this segment is annotated with key type and value DET, NOUN, or PREP (the three first such segments are shown on
figure 3 below). Each attribute-value pair of each XML tag has indeed been automatically converted to a {key: value}
annotation.

See also

• Reference: Text Field widget

• Reference: Extract XML widget

• Cookbook: Convert XML tags to Orange Textable annotations

1.3.2 Merging units with XML annotations

Annotations can also be used for merging units (that is, columns) during counting operations in particular. Consider
again the example of annotations extracted from XML data developed here. The segmentation produced by Extract
XML can be sent to an instance of Count as on the schema shown on figure 1 below.

If the type annotation key is selected in section Units of widget Count’s interface (see figure 2 below), the annotation
values correponding to this key (namely part of speech) will be counted in place of the segments’ content.

The resulting table is as follows:

Table 8: Table 1: Part of speech frequency.
NOUN DET PREP
3 1 1

Of course, annotations may be used to merge units and contexts simultaneously.

1.3. Advanced topics 39

Orange3-Textable Documentation, Release 3.1.11

Fig. 34: Figure 1: Sample text annotated using XML markup.

40 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 35: Figure 2: Interface of the Extract XML widget.

1.3. Advanced topics 41

Orange3-Textable Documentation, Release 3.1.11

Fig. 36: Figure 3: Annotations imported using Extract XML.

Fig. 37: Figure 1: Counting segments extracted from XML data.

42 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 38: Figure 2: Merging units using annotation values.

See also

• Getting started: Converting XML markup to annotations

• Reference: Extract XML widget

• Reference: Count widget

1.3.3 A note on regular expressions

Orange Textable widgets rely heavily on regular expressions (or regexes), which are essentially a body of conventions
for describing a set of strings by means of a single string. These conventions are widely documented in books and on
the Internet, so we will not give here yet another introduction to this topic. Nevertheless, a basic knowledge of regexes
is required to perform any non-trivial task with Orange Textable, and more advanced knowledge to fully exploit the
software’s possibilities.

The syntax of regexes is partly standardized, but some variations remain. Orange Textable uses Python regexes, for
which Python documentation is the best source of information. In particular, it features a good introduction to regexes.
A first reading might be limited to the following sections:

• Simple Patterns

• More Metacharaters

Also recommended are the following:

• Compilation Flags

• Lookahead Assertions

• Greedy vs. Non-Greedy

1.3.4 Partitioning segmentations using a regex

There are many situations where we might want so selectively in- or exclude segments from a segmentation. For
instance, a user might be want to exclude from a word segmentation all those that are less than 4 letters long. The
Select widget is tailored for such tasks.

The widget’s interface (see figure 1 below) offers a choice between two modes: Include and Exclude. Depending on
this parameter, incoming segments that satisfy a given condition will be either included in or excluded from the output
segmentation. By default (i.e. when the Advanced settings box is unchecked), the condition is specified by means of
a regex, which will be applied to each incoming segment successively. (For now, the option Annotation key: (none)
can be ignored.)

1.3. Advanced topics 43

http://docs.python.org/2/howto/regex.html
http://docs.python.org/2/howto/regex.html#simple-patterns
http://docs.python.org/2/howto/regex.html#more-metacharacters
http://docs.python.org/2/howto/regex.html#compilation-flags
http://docs.python.org/2/howto/regex.html#lookahead-assertions
http://docs.python.org/2/howto/regex.html#greedy-versus-non-greedy

Orange3-Textable Documentation, Release 3.1.11

Fig. 39: Figure 1: Excluding short words with widget Select.

44 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

In the example of figure 1, the widget is configured to exclude all incoming segments containing no more than 3
letters. Note that without the beginning of segment and end of segment anchors (^ and $), all words containing at least
a sequence of 1 to 3 letters–i.e. all the words–would be excluded.

Note that Select automatically emits a second segmentation containing all the segments that have been discarded from
the main output segmentation (in the case of figure 1 above, that would be all words less than 4 letters long). This
feature is useful when both the selected and the discarded segments are to be further processed on distinct branches.
By default, when Select is connected to another widget, the main segmentation is being emitted. In order to send
the segmentation of discarded segments instead, right-click on the outgoing connection and select Reset Signals (see
figure 2 below).

Fig. 40: Figure 2: Right-clicking on a connection and requesting to Reset Signals.

This opens the dialog shown on figure 3 below, where the user can “drag-and-drop” from the gray box next to Dis-
carded data up to the box next to Segmentation, thus replacing the existing green connection. Clicking OK validates
the modification and sends the discarded data through the connection.

Fig. 41: Figure 3: This dialog allows the user to select a non-default connection between two widgets.

See also

• Reference: Select widget

• Cookbook: Include/exclude segments based on a pattern

1.3.5 Using a segmentation to filter another

In some cases, the number of forms to be selectively included in or excluded from a segmentation is too large for using
the Select widget. A typical example is the removal of “stopwords” from a text: in English for instance, although the
list of such words is finite, it is too long to try to encode it by means of a regex (cf. an example of such a list).

1.3. Advanced topics 45

http://members.unine.ch/jacques.savoy/clef/englishST.txt

Orange3-Textable Documentation, Release 3.1.11

The purpose of widget Intersect is precisely to solve that kind of problem. It takes two segmentations in input and lets
the user include in or exclude from the first (source) segmentation those segments whose content is the same as that of
a segment in the second (filter) segmentation. The widget’s basic interface is shown on figure 1 below).

Fig. 42: Figure 1: Interface of widget Intersect configured for stopword removal.

Similarly to widget Select, user must choose between modes Include and Exclude. The next step is to specify which
incoming segmentation plays the role of the Source segmentation and the Filter segmentation. (Here again, we will
ignore the Annotation key option for the time being.)

In order to try out the widget, set up a schema similar to the one shown on figure 2 below). The first instance of Text
Field contains the text to process (for instance the Universal Declaration of Human Rights) and is labelled as such,
while the second instance, Text Field (1), contains the list of English stopwords mentioned above. Both instances
of Segment produce a word segmentation with regex \w+; the only difference in their configuration is the Segment
Widget label , i.e. words for the segmentation of the UDHR and stopwords for the segmentation of Text Field (1).
Finally, the instance of Intersect is configured as shown on figure 1 above.

The content of the first segments of the resulting segmentation is:

PREAMBLE
Whereas
recognition
inherent
dignity
equal

(continues on next page)

46 Chapter 1. Contents

http://www.un.org/en/documents/udhr/

Orange3-Textable Documentation, Release 3.1.11

Fig. 43: Figure 2: Example schema for removing stopword using widget Intersect .

(continued from previous page)

inalienable
rights
members
human
family
foundation
freedom
justice
peace
world
...

Exercise: Based on an instance of Text Field, produce a segmentation containing all words less than 4 letters long that
appear at the beginning of each line, excluding I, you, he, she, we. (solution)

Solution:

Figure 3 below shows a possible solution. The 4 instances in the lower part of the schema (Text Field (1), Segment
(1), Intersect, and Display) are configured as in figure 2 above–with Text Field (1) containing the list of pronouns to
exclude.

The difference lies in the addition of a Segment instance in the upper branch. In this branch, the first instance (Segment)
produces a segmentation into lines with regex .+ while Segment (2) extracts the first word of each line, provided it is
shorter than 4 letters (regex ^\w{1,3}\b). Intersect eventually takes care of excluding the pronouns listed above.

(back to the exercise)

See also

• Reference: Select widget

• Reference: Intersect widget

1.3. Advanced topics 47

Orange3-Textable Documentation, Release 3.1.11

Fig. 44: Figure 3: A possible solution.

• Cookbook: Exclude segments based on a stoplist

1.3.6 XML Annotation-based selection using a regex

Another common way of exploiting annotations consists in using them to select the segments that will be in-/excluded
by an instance of Select (see Partitioning segmentations) or Intersect (see Using a segmentation to filter another).
Thus, in the case of the XML data example introduced here (and further developed there), we might insert an instance
of Select between those of Extract XML and Count (see figure 1 below) in order to include only “content words”.

Fig. 45: Figure 1: Inserting an instance of Select to filter a segmentation.

In this simplified example, the Select instance could thus be parameterized as indicated on figure 2 below), so as to
exclude (Mode: Exclude) those segments whose annotation value for key type (Annotation key: type) is DET or
PREP (Regex: ^(DET|PREP)$).

See also

• Getting started: Partitioning segmentations

• Getting started: Using a segmentation to filter another

• Getting started: Converting XML markup to annotations

• Getting started: Merging units with annotations

• Reference: Select widget

• Reference: Intersect widget

• Reference: Extract XML widget

• Reference: Count widget

48 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 46: Figure 2: Excluding segments based on annotation values with Select.

1.3. Advanced topics 49

Orange3-Textable Documentation, Release 3.1.11

1.4 Cookbook

This section describes how to get a number of basic tasks done with Orange Textable. Each task is explained by means
of a concise, illustrated recipe. The goal is to provide the user with a set of elementary operations which, once properly
chained, may form the basic skeleton of various more ambitious projects.

1.4.1 Text input

Import text from keyboard

Goal

Input text using keyboard for further processing with Orange Textable.

Ingredients

Widget Text Field

Icon
Quantity 1

Procedure

1. Create an instance of Text Field on the canvas.

2. Open its interface by double-clicking on the created instance.

3. Type text in the text field at the top of the interface.

4. Click the Send button (or make sure the Send automatically checkbox is selected).

5. A segmentation covering the input text is then available on the Text Field instance’s output connections; to
display or export it, see Cookbook: Text output.

See also

• Getting started: Keyboard input and segmentation display

• Reference: Text Field widget

• Cookbook: Text output

Import text from file

Goal

Import the content of one or more raw text files for further processing with Orange Textable.

50 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 47: Figure 1: Importing a string using widget Text Field.

1.4. Cookbook 51

Orange3-Textable Documentation, Release 3.1.11

Ingredients

Widget Text Files

Icon
Quantity 1

Procedure

Single file

Fig. 48: Figure 1: Importing the content of a file using the Text Files widget.

1. Create an instance of Text Files on the canvas.

2. Open its interface by double-clicking on the created instance.

52 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

3. Make sure the Advanced settings checkbox is not selected.

4. Click the Browse button to open the file selection dialog.

5. Select the file you want to import and close the file selection dialog by clicking Ok.

6. In the Encoding drop-down menu, select the encoding that corresponds to your file.

7. Click the Send button (or make sure the Send automatically checkbox is selected).

8. A segmentation covering the file’s content is then available on the Text Files instance’s output connections; to
display or export it, see Cookbook: Text output.

Multiple files

Fig. 49: Figure 2: Importing the content of several files using the Text Files widget.

1. Create an instance of Text Files on the canvas.

1.4. Cookbook 53

Orange3-Textable Documentation, Release 3.1.11

2. Open its interface by double-clicking on the created instance.

3. Make sure the Advanced settings checkbox is selected.

4. If needed, empty the list of imported files by clicking the Clear all button.

5. Click the Browse button to open the file selection dialog.

6. Select the first file you want to import. Select the encoding that corresponds to your file (if unknown, choose
auto-detect in Encoding) .

7. Click the Add button to add your first file to the list of imported files.

8. Repeat steps 5 to 7 for adding all your files.

9. Click the Send button (or make sure the Send automatically checkbox is selected).

10. A segmentation containing a segment covering each imported file’s content is then available on the Text Files
instance’s output connections; to display or export it, see Cookbook: Text output.

See also

• Reference: Text Files widget

• Cookbook: Text output

Import text from internet location

Goal

Import text content located at one or more URLs for further processing with Orange Textable.

Ingredients

Widget URLs

Icon
Quantity 1

Procedure

Single URL

1. Create an instance of URLs on the canvas.

2. Open its interface by double-clicking on the created instance.

3. Make sure the Advanced settings checkbox is not selected.

4. In the URL field, type the URL whose content you want to import (including the http:// prefix).

5. In the Encoding drop-down menu, select the encoding that corresponds to this URL.

6. Click the Send button (or make sure the Send automatically checkbox is selected).

54 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 50: Figure 1: Importing text from an internet location using the URLs widget.

7. A segmentation covering the URL’s content is then available on the URLs instance’s output connections; to
display or export it, see Cookbook: Text output.

Multiple URLs

1. Create an instance of URLs on the canvas.

2. Open its interface by double-clicking on the created instance.

3. Make sure the Advanced settings checkbox is selected.

4. If needed, empty the list of imported URLs by clicking the Clear all button.

5. In the URL(s) field, enter the URLs you want to import (including the http:// prefix), separated by the string
” / ” (space + slash + space); make sure they all have the same encoding (you will be able to add URLs that have
other encodings later).

6. In the Encoding drop-down menu, select the encoding that corresponds to the set of selected URLs.

7. Click the Add button to add the set of selected URLs to the list of imported URLs.

8. Repeat steps 5 to 7 for adding URLs in other encoding(s).

9. Click the Send button (or make sure the Send automatically checkbox is selected).

10. A segmentation containing a segment covering each imported URL’s content is then available on the URLs
instance’s output connections; to display or export it, see Cookbook: Text output.

See also

• Reference: URLs widget

• Cookbook: Text output

1.4. Cookbook 55

Orange3-Textable Documentation, Release 3.1.11

Fig. 51: Figure 2: Importing text from several internet locations using the URLs widget.

56 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

1.4.2 Text output

Display text content

Goal

Display the content of a text (segmentation).

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

Widget Display

Icon
Quantity 1

Procedure

Fig. 52: Figure 1: Viewing text with an instance of Display.

1.4. Cookbook 57

Orange3-Textable Documentation, Release 3.1.11

1. Create an instance of Display on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that emits the segmentation to
be displayed (e.g. Text Field) to the Display instance’s input connection (lefthand side).

3. Open the Display instance’s interface by double-clicking on its icon on the canvas to view the text content.

Comment

• If the input data consist of a large number of segments (thousands or more), the time necessary to display them
can be prohibitively long.

See also

• Getting started: Keyboard input and segmentation display

• Reference: Display widget

• Cookbook: Text input

• Cookbook: Segmentation manipulation

Export text content (and/or change text encoding)

Goal

Export the content of a text (segmentation).

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

Widget Display

Icon
Quantity 1

Procedure

1. Create an instance of Display on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that emits the segmentation to
be displayed (e.g. Text Field) to the Display instance’s input connection (lefthand side).

3. Open the Display instance’s interface by double-clicking on its icon on the canvas to view the imported text.

4. Tick the Advanced settings checkbox.

58 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 53: Figure 1: Export text with an instance of Display.

5. In the Formatting section, tick the Apply custom formatting checkbox.

6. In the Export section, you can choose the encoding for the text that will be exported using the File encoding
drop-down menu.

7. Click on Export to file button to open the file selection dialog.

8. Select the location you want to export your file to and close the file selection dialog by clicking on Ok.

Comment

• If you rather want to copy the text content in order to later paste it in another program, click on Copy to
clipboard; note that in this case, the encoding is by default utf8 and cannot be changed.

• If the input data contains several texts (segments) you can specify a string that will be inserted between each
successive text in Segment delimiter; note that the default segment delimiter \n represents a carriage return.

• If the input data consist of a large number of segments (thousands or more), the time necessary to display them
can be prohibitively long.

See also

• Reference: Display widget

• Cookbook: Text input

• Cookbook: Segmentation manipulation

1.4. Cookbook 59

Orange3-Textable Documentation, Release 3.1.11

1.4.3 Text preprocessing and recoding

Convert text to lower or upper case

Goal

Convert text to lower or upper case.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

Widget Preprocess

Icon
Quantity 1

Procedure

Fig. 54: Figure 1: Convert text to lower or upper case with an instance of Preprocess.

1. Create an instance of Preprocess on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that emits the segmentation to
be modified (e.g. Text Field) to the Preprocess instance’s input connection (lefthand side).

3. Open the Preprocess instance’s interface by double-clicking on its icon on the canvas.

4. In the Processing section, tick the Transform case checkbox.

60 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

5. Choose to lower or to upper in the drop-down menu on the right.

6. Click the Send button (or make sure the Send automatically checkbox is selected).

7. A segmentation containing the modified text is then available on the Preprocess instance’s output connections;
to display or export it, see Cookbook: Text output.

See also

• Reference: Preprocess widget

• Cookbook: Text input

• Cookbook: Segmentation manipulation

• Cookbook: Text output

Remove accents from text

Goal

Remove all accents from text.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

Widget Preprocess

Icon
Quantity 1

Procedure

1. Create an instance of Preprocess on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that that emits the segmenta-
tion to be modified (e.g. Text Field) to the Preprocess instance’s input connection (lefthand side).

3. Open the Preprocess instance’s interface by double-clicking on its icon on the canvas.

4. In the Processing section, tick the Remove accents checkbox.

5. Click the Send button (or make sure the Send automatically checkbox is selected).

6. A segmentation containing the modified text is then available on the Preprocess instance’s output connections;
to display or export it, see Cookbook: Text output.

1.4. Cookbook 61

Orange3-Textable Documentation, Release 3.1.11

Fig. 55: Figure 1: Remove accents from text with an instance of Preprocess.

See also

• Reference: Preprocess widget

• Cookbook: Text input

• Cookbook: Segmentation manipulation

• Cookbook: Text output

Replace all occurrences of a string/pattern

Goal

Replace all occurrences of a string (or pattern) in a text with another string.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

Widget Recode

Icon
Quantity 1

62 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Procedure

Fig. 56: Figure 1: Replace all occurrences of a string with an instance of Recode.

1. Create an instance of Recode on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that emits the segmentation to
be modified (e.g. Text Field) to the Recode instance’s input connection (lefthand side).

3. Open the Recode instance’s interface by double-clicking on its icon on the canvas.

4. In the Substitution section, insert the string that will be replaced in the Regex field.

5. In the Replacement string field insert the replacement string.

6. Click the Send button (or make sure the Send automatically checkbox is selected).

7. A segmentation containing the modified text is then available on the Recode instance’s output connections; to
display or export it, see Cookbook: Text output.

Comment

• In the Regex field you can use all the syntax of Python’s regular expression (cf. Python documentation).

• In our example, we choose to replace all occurrences of British -our with American -or (for example, from
colour to color); unless otherwise specified (typically using word boundary “anchor” \b), replacements will
also occur within words, i.e. coloured to colored.

See also

• Reference: Recode widget

• Cookbook: Text input

• Cookbook: Segmentation manipulation

• Cookbook: Text output

1.4. Cookbook 63

http://docs.python.org/library/re.html

Orange3-Textable Documentation, Release 3.1.11

1.4.4 Segmentation manipulation

Segment text in smaller units

Goal

Segment text in smaller units (e.g. lines, words, letters, etc.).

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

Widget Segment

Icon
Quantity 1

Procedure

Fig. 57: Figure 1: Segment text in lines with an instance of Segment.

1. Create an instance of Segment on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that emits the segmentation to
be segmented (e.g. Text Field) to the Segment instance’s input connection (lefthand side).

64 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

3. Open the Segment instance’s interface by double-clicking on its icon on the canvas.

4. In the Regex section, insert the regular expression describing the units that will be segmented (for example
to segment a text in lines use .+, in words \w+, in letters \w, in characters ., and so on) then click on the
validation button on the right.

5. Click the Send button (or make sure the Send automatically checkbox is selected).

6. A segmentation containing a segment for each specified unit (e.g. line) is then available on the Segment in-
stance’s output connections; to display or export it, see Cookbook: Text output.

Comment

• In the Regex field you can use all the syntax of Python’s regular expression (cf. Python documentation).

See also

• Getting started: Segmenting data into smaller units

• Reference: Segment widget

• Cookbook: Text input

• Cookbook: Segmentation manipulation

• Cookbook: Text output

Merge several texts

Goal

Merge several texts together so they can be further processed as a whole.

Prerequisites

Two or more text have been imported in Orange Textable (see Cookbook: Text input) and possibly further processed
(see Cookbook: Segmentation manipulation).

Ingredients

Widget Merge

Icon
Quantity 1

1.4. Cookbook 65

http://docs.python.org/library/re.html

Orange3-Textable Documentation, Release 3.1.11

Fig. 58: Figure 1: Merge several texts with an instance of Merge

Procedure

1. Create an instance of Merge on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instances that emit the segmentations
to be merged together (e.g. two instances of Text Field) to the Merge instance’s input connection (lefthand side).

3. Open the Merge widget instance’s interface by double-clicking on its icon on the canvas.

4. All input data appear in the Ordering section; you can change their ordering by selecting a line and clicking on
Move Up or Move Down.

5. Click the Send button (or make sure the Send automatically checkbox is selected).

6. A segmentation containing all input data merged together is then available on the Merge instance’s output
connections; to display or export it, see Cookbook: Text output.

See also

• Getting started: Merging segmentations together

• Reference: Merge widget

• Cookbook: Text input

• Cookbook: Segmentation manipulation

• Cookbook: Text output

Include/exclude segments based on a pattern

66 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Goal

Include or exclude segments from a segmentation using a regular expression

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and in all likelihood it has been segmented
in smaller units (see Cookbook: Segment text in smaller units).

Ingredients

Widget Select

Icon
Quantity 1

Procedure

Fig. 59: Figure 1: Using the Select widget to include/exclude segments from a segmentation based on a regular
expression

1.4. Cookbook 67

Orange3-Textable Documentation, Release 3.1.11

1. Create an instance of Select on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that emits the segmentation to
be filtered (e.g. an instance of Segment) to the Select instance’s input connection (lefthand side).

3. Open the Select instance’s interface by double-clicking on its icon on the canvas.

4. In the Select section, choose either Mode: Include or Exclude.

5. In the Regex field, insert the pattern that will select the units to be included or excluded, such as the single letter
e in our example.

6. Click the Send button (or make sure the Send automatically checkbox is selected).

7. A segmentation containing the selected segments is then available on the Select instance’s output connections;
to display or export it, see Cookbook: Text output.

Comment

• In the Regex field you can use all the syntax of Python’s regular expression (cf. Python documentation).

• The Select widget emits on a second output connection (not selected by default) a segmentation containing the
segments that were not selected.

See also

• Getting started: Partitioning segmentations

• Reference: Select widget

• Cookbook: Text input

• Cookbook: Segment text in smaller units

• Cookbook: Text output

Filter segments based on their frequency

Goal

Filter out the most rare and/or frequent segments of a segmentation.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and in all likelihood it has been segmented
in smaller units (see Cookbook: Segment text in smaller units).

Ingredients

Widget Select

Icon
Quantity 1

68 Chapter 1. Contents

http://docs.python.org/library/re.html

Orange3-Textable Documentation, Release 3.1.11

Procedure

Fig. 60: Figure 1: Filtering out low-frequency segments with an instance of Select

1. Create an instance of Select on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that emits the segmentation to
be filtered (e.g. an instance of Segment) to the Select instance’s input connection (lefthand side).

3. Open the Select instance’s interface by double-clicking on its icon on the canvas.

4. Tick the Advanced settings checkbox.

5. In the Select section, choose Threshold in the Method drop-down menu.

6. Under Threshold expressed as, choose whether you want to express frequency thresholds in terms of Count
(i.e. number of tokens) or of Proportion (i.e. percentage of tokens).

7. If you want to set a minimum frequency threshold, tick the Min. count (respectively Min. proportion (%))
checkbox and indicate the minimum frequency that a segment type must have in order to be included in the
output.

8. If you want to set a maximum frequency threshold, tick the Max. count (respectively Max. proportion (%))
checkbox and indicate the maximum frequency that a segment type can have in order to be included in the
output.

9. Click the Send button (or make sure the Send automatically checkbox is selected).

10. A segmentation containing the selected segments is then available on the Select instance’s output connections;
to display or export it, see Cookbook: Text output.

1.4. Cookbook 69

Orange3-Textable Documentation, Release 3.1.11

Comment

• The Select widget emits on a second output connection (not selected by default) a segmentation containing the
segments that were not selected.

See also

• Reference: Select widget

• Cookbook: Text input

• Cookbook: Segment text in smaller units

• Cookbook: Text output

Create a random selection or sample of segments

Goal

Create a random sample of segments.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and in all likelihood it has been segmented
in smaller units (see Cookbook: Segment text in smaller units).

Ingredients

Widget Select

Icon
Quantity 1

Procedure

1. Create an instance of Select on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that emits the segmentation to
be sampled (e.g. an instance of Segment) to the Select instance’s input connection (lefthand side).

3. Open the Select instance’s interface by double-clicking on its icon on the canvas.

4. Tick the Advanced settings checkbox.

5. In the Select section, choose the Method: Sample.

6. Under Sample size expressed as, choose whether you want to express sample size in terms of Count (i.e.
number of tokens) or of Proportion (i.e. percentage of tokens).

7. In the Sample size control, choose the number of segments that will be randomly sampled (respectively, choose
the percentage of segments in the Sampling rate (%) control).

70 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 61: Figure 1: Create a random selection or sample of segments with an instance of Select

1.4. Cookbook 71

Orange3-Textable Documentation, Release 3.1.11

8. Click the Send button (or make sure the Send automatically checkbox is selected).

9. A segmentation containing the sampled segments is then available on the Select instance’s output connections;
to display or export it, see Cookbook: Text output.

Comment

• The Select widget emits on a second output connection (not selected by default) a segmentation containing the
segments that were not selected.

See also

• Reference: Select widget

• Cookbook: Text input

• Cookbook: Segment text in smaller units

• Cookbook: Text output

Exclude segments based on a stoplist

Goal

Filter out segments based on a stoplist.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and it has been segmented into words
(see Cookbook: Segment text in smaller units).

Ingredients

Widget Text Field Segment Intersect

Icon

figures/intersect_36.png

Quantity 1 1 1

Procedure

1. Create an instance of Text Field on the canvas and paste into it the stoplist you want to use.

2. Follow the indications given in Cookbook: Segment text in smaller units in order to segment the stoplist into
words; in what follows, it is assumed that the label of the resulting segmentation is stop words.

3. Create an instance of Intersect on the canvas.

72 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 62: Figure 1: Exclude segments based on a stoplist with instances of Text Field, Segment and Intersect

1.4. Cookbook 73

Orange3-Textable Documentation, Release 3.1.11

4. Drag and drop from the output connection (righthand side) of the widget instance that emits the segmentation to
be filtered (here the top instance of Segment) to the Intersect instance’s input connection (lefthand side).

5. Likewise, connect the Segment instance that emits the stop words segmentation to the Intersect instance.

6. Open the Intersect instance’s interface by double-clicking on its icon on the canvas.

7. In the Intersect section, choose Mode: Exclude.

8. In the Source segmentation field, choose the label of the word segmentation to be filtered (here: words); in the
Filter segmentation field, choose the label the segmentation containing the stopwords (here: stop words).

9. Click the Send button (or make sure the Send automatically checkbox is selected).

10. A segmentation containing the filtered segmentation is then available on the Intersect instance’s output connec-
tions; to display or export it, see Cookbook: Text output.

Comment

• Stopword lists for various languages can be found here.

See also

• Getting started: Using a segmentation to filter another

• Reference: Intersect widget

• Cookbook: Text input

• Cookbook: Segment text in smaller units

• Cookbook: Text output

Convert XML tags into Orange Textable annotations

Goal

Convert XML markup into Orange Textable data structures such as segments and their annotations.

Prerequisites

Some text containing XML markup has been imported in Orange Textable (see Cookbook: Text input) and possibly
further processed (see Cookbook: Segmentation manipulation).

Ingredients

Widget Extract XML

Icon
Quantity 1

74 Chapter 1. Contents

http://members.unine.ch/jacques.savoy/clef/

Orange3-Textable Documentation, Release 3.1.11

Procedure

Fig. 63: Figure 1: Convert XML tags into Orange Textable annotations with an instance of Extract XML

1. Create an instance of Extract XML on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that emits the data containing
XML markup (e.g. Text Field) to the Extract XML widget instance’s input connection (lefthand side).

3. Open the Extract XML instance’s interface by double-clicking on its icon on the canvas.

4. In the XML Extraction section, insert the desired XML element (here w).

5. Click the Send button (or make sure the Send automatically checkbox is selected).

6. A segmentation containing a segment for each occurrence of the specified tag is then available on the Segment
instance’s output connections; to display or export it, see Cookbook: Text output.

Comment

• The XML tags that have been retrieved are actually discarded from the resulting segmentation: only their content
is included in the output.

• The attributes of the XML tags are automatically converted to annotations associated with the created segments.

• Note that it is only possible to extract instances of a single XML element type at a time (here w).

• However, it is possible to chain several Extract XML instances in order to successively extract instances of
different XML elements. For example, a first instance to extract div type elements, a second to extract w type
elements, and so on. In this case, it is important to make sure that the Remove markup option is not selected.

1.4. Cookbook 75

Orange3-Textable Documentation, Release 3.1.11

See also

• Getting started: Converting XML markup to annotations

• Reference: Extract XML widget

• Cookbook: Text input

• Cookbook: Segmentation manipulation

• Cookbook: Text output

1.4.5 Text analysis

Count unit frequency

Goal

Count the frequency of each segment type that appears in a segmentation.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and it has been segmented in smaller
units (see Cookbook: Segment text in smaller units).

Ingredients

Widget Count

Icon
Quantity 1

Procedure

1. Create an instance of Count on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that emits the segments that
will be counted (e.g. Segment) to the Count widget instance’s input connection (lefthand side).

3. Open the Count instance’s interface by double-clicking on its icon on the canvas.

4. In the Units section, select the segmentation containing units to be counted in the Segmentation drop-down
menu (here: letters).

5. Click the Compute button (or make sure the Compute automatically checkbox is selected).

6. A table showing the results is then available at the output connection of the Count instance; to display or export
it, see Cookbook: Table output.

76 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 64: Figure 1: Count unit frequency globally with an instance of Count.

1.4. Cookbook 77

Orange3-Textable Documentation, Release 3.1.11

Comment

• The total number of segments in your segmentation appears in the Info section (here: 14).

• It is also possible to define units as segment pairs (bigrams), triples (trigrams), and so on, by increasing the
Sequence length parameter in the Units section.

• If Sequence length is set to a value greater than 1, the string appearing in the Intra-sequence delimiter field
will be inserted between the elements composing each n-gram in the column headers, which can enhance their
readability. The default is # but you can change it by inserting the delimiter of your choice.

See also

• Getting started: Counting segment types

• Reference: Count widget

• Cookbook: Text input

• Cookbook: Segment text in smaller units

• Cookbook: Table output

Count occurrences of smaller units in larger segments

Goal

Count the occurrences of smaller units (for instance letters) in larger segments (for instance words), and report the
results by means of a two-dimensional contingency table (e.g. with words in rows and letters in columns).

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and it has been segmented in at least two
hierarchical levels, e.g. words and letters (see Cookbook: Segment text in smaller units).

Ingredients

Widget Count

Icon
Quantity 1

Procedure

1. Create an instance of Count on the canvas.

2. Drag and drop from the output connection (righthand side) of both widget instances that have been used to
segment the text (here the two instances of Segment) to the Count widget instance’s input connection (lefthand
side), thus forming a triangle.

78 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 65: Figure 1: Count occurrences of smaller units in larger segments with an instance of Count

1.4. Cookbook 79

Orange3-Textable Documentation, Release 3.1.11

3. Open the Count instance’s interface by double-clicking on its icon on the canvas.

4. In the Units section, select the segmentation into smaller units (here: letters).

5. In the Context section, choose Mode: Containing segmentation.

6. In the Segmentation field, select the context segmentation, i.e. the segmentation into larger segments (here
words).

7. Click the Compute button (or make sure the Compute automatically checkbox is selected).

8. A table showing the results is then available at the output connection of the Count instance; to display or export
it, see Cookbook: Table output.

Comment

• The total number of segments in your segmentation appears in the Info section (here: 14).

• It is also possible to define units as segment pairs (bigrams), triples (trigrams), and so on, by increasing the
Sequence length parameter in the Units section.

• If Sequence length is set to a value greater than 1, the string appearing in the Intra-sequence delimiter field
will be inserted between the elements composing each n-gram in the column headers, which can enhance their
readability. The default is # but you can change it by inserting the delimiter of your choice.

See also

• Getting started: Counting in specific contexts

• Reference: Count widget

• Cookbook: Text input

• Cookbook: Segment text in smaller units

• Cookbook: Table output

Count transition frequency between adjacent units

Goal

Count the frequency of transitions between adjacent segment types in a text.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and it has been segmented in smaller
units (see Cookbook: Segment text in smaller units).

80 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Ingredients

Widget Count

Icon
Quantity 1

Procedure

Fig. 66: Figure 1: Count transition frequency with an instance of Count

1. Create an instance of Count on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that has been used to segment
the text (e.g. Segment) to the Count widget instance’s input connection (lefthand side).

3. Open the Count instance’s interface by double-clicking on its icon on the canvas.

4. In the Units section, select the segmentation in which transitions between units will be counted.

5. In the Context section, choose Mode: Left-right neighborhood.

6. Select Left context size: 1 and Right context size: 0.

1.4. Cookbook 81

Orange3-Textable Documentation, Release 3.1.11

7. Click the Compute button (or make sure the Compute automatically checkbox is selected).

8. A table showing the results is then available at the output connection of the Count instance; to display or export
it, see Cookbook: Table output.

Comment

• It is also possible to define units as segment pairs (bigrams), triples (trigrams), and so on, by increasing the
Sequence length parameter in the Units section.

• If Sequence length is set to a value greater than 1, the string appearing in the Intra-sequence delimiter field
will be inserted between the elements composing each n-gram in the column headers, which can enhance their
readability. The default is # but you can change it by inserting the delimiter of your choice.

• Furthermore, it is possible to count the apparition of units in more complex contexts than simply the previous
unit, such as: the n previous units (Left context size); the n following units (Right context size); or any
combination of both.

• The Unit position marker is a string that indicates the separation between left and right contexts sides. The
default is _ but you can change it by inserting the marker of your choice.

See also

• Reference: Count widget

• Cookbook: Text input

• Cookbook: Segment text in smaller units

• Cookbook: Table output

Examine the evolution of unit frequency along the text

Goal

Examine how the frequency of segment types evolves from the beginning to the end of a segmentation.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and it has been segmented in smaller
units (see Cookbook: Segment text in smaller units).

Ingredients

Widget Count

Icon
Quantity 1

82 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Procedure

Fig. 67: Figure 1: Examine the evolution of unit frequency with an instance of Count

1. Create an instance of Count on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that has been used to segment
the text (e.g. Segment) to the Count widget instance’s input connection (lefthand side).

3. Open the Count instance’s interface by double-clicking on its icon on the canvas.

4. In the Units section, select the segmentation whose units will be counted.

5. In the Context section, choose Mode: Sliding window.

6. Set the Window size parameter to the desired value; with the minimum value of 1, frequency will be counted
separately at every successive position in the segmentation, whereas a larger value n > 1 will have the effect that
frequency will be counted in larger and partially overlapping spans (segments 1 to n, then 2 to n + 1, and so on),
resulting in a smoother curve.

7. Click the Compute button (or make sure the Compute automatically checkbox is selected).

8. A table showing the results is then available at the output connection of the Count instance; to display or export
it, see Cookbook: Table output.

Comment

• It is also possible to define units as segment pairs (bigrams), triples (trigrams), and so on, by increasing the
Sequence length parameter in the Units section.

1.4. Cookbook 83

Orange3-Textable Documentation, Release 3.1.11

• If Sequence length is set to a value greater than 1, the string appearing in the Intra-sequence delimiter field
will be inserted between the elements composing each n-gram in the column headers, which can enhance their
readability. The default is # but you can change it by inserting the delimiter of your choice.

See also

• Reference: Count widget

• Cookbook: Segment text

• Cookbook: Display table

Build a concordance

Goal

Build a concordance to examine the context of occurrence of a given string.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

Widget Segment Context

Icon
Quantity 1 1

Procedure

1. Create an instance of Segment and an instance of Context on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that emits the segmentation in
which occurrences of the query string will be retrieved (e.g. Text Field) to the Segment widget instance’s input
connection (lefthand side).

3. Also connect both the Text Field instance and the Segment instance to the Context instance (thus forming a
triangle).

4. Open the Segment instance’s interface by double-clicking on its icon on the canvas and type the string whose
context of occurrence will be examined in the Regex field (here: hobbit); assign it a recognizable Output
segmentation label, such as key_segments for instance.

5. Click the Send button (or make sure the Send automatically checkbox is selected).

6. Open the Context instance’s interface by double-clicking on its icon on the canvas.

7. In the Units section, select the segmentation that contains the occurrences of the query string (here:
key_segments) using the Segmentation drop-down menu.

84 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 68: Figure 1: Widgets used build a concordance and their interfaces

1.4. Cookbook 85

Orange3-Textable Documentation, Release 3.1.11

8. In the Contexts section, choose Mode: Containing segmentation and select the segmentation that contains the
original text (here: text_string, as emitted by the Text Field instance) using the Segmentation drop-down menu.

9. Tick the Max. length checkbox and set the maximum number of characters that should be displayed on either
side of each occurrence of the query string.

10. Click the Compute button (or make sure the Compute automatically checkbox is selected).

11. A table showing the results is then available at the output connection of the Count instance; to display or export
it, see Cookbook: Table output.

Comment

• In the Regex field of the Segment widget you can use all the syntax of Python’s regular expression (cf. Python
documentation); for instance, if you wish to restrict your search to entire words, you might frame the query
string with word boundary anchors \b (in our example \bhobbit\b).

See also

• Reference: Segment widget

• Reference: Context widget

• Cookbook: Text input

• Cookbook: Segmentation manipulation

• Cookbook: Table output

1.4.6 Table output

Display table

Goal

Display an Orange Textable table.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see Cook-
book: Segmentation manipulation). A table has been created by means of one of Orange Textable’s table construction
widgets (see Cookbook: Text analysis).

Ingredients

Widget Convert Data Table

Icon
Quantity 1 1

86 Chapter 1. Contents

http://docs.python.org/library/re.html
http://docs.python.org/library/re.html

Orange3-Textable Documentation, Release 3.1.11

Procedure

Fig. 69: Figure 1: Display an Orange Textable table with instances of Convert and Data Table.

1. Create an instance of Convert and Data Table on the canvas (the latter is found in the Data tab of Orange
Canvas).

2. Drag and drop from the output connection (righthand side) of the widget instance that has been used to build a
table (e.g. Context) to the Convert widget instance’s input connection (lefthand side).

3. Connect the Convert instance to the Data Table instance.

4. Open the Data Table instance’s interface by double-clicking on its icon on the canvas to display the table.

Comment

• If the table is a frequency table, you may want to change its default orientation of the table to make it easier
to read. To that effect, open the Convert instance’s interface, tick the Advanced settings checkbox, and in the
Transform section, tick the transpose checkbox.

See also

• Getting started: Converting between table formats

• Reference: Convert widget

• Reference: Table construction widgets

• Cookbook: Text input

• Cookbook: Segmentation manipulation

• Cookbook: Text analysis

1.4. Cookbook 87

Orange3-Textable Documentation, Release 3.1.11

Fig. 70: Figure 2: Change the orientation of an Orange Textable frequency table using an instance of Convert.

Export table

Goal

Export an Orange Textable table in a text file in order to later import it in another program (e.g. spreadsheet software).

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see Cook-
book: Segmentation manipulation). A table has been created by means of one of Orange Textable’s table construction
widgets (see Cookbook: Text analysis).

Ingredients

Widget Convert

Icon
Quantity 1

Procedure

1. Create an instance of Convert on the canvas.

2. Drag and drop from the output connection (righthand side) of the widget instance that has been used to build a
table (e.g. Context) to the Convert widget instance’s input connection (lefthand side).

88 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 71: Figure 1: Export table with an instance of Convert

3. Open the Convert instance’s interface by double-clicking on its icon on the canvas.

4. Select the desired encoding for the exported data (e.g. utf8).

5. Click the Export to file button to open the file selection dialog.

6. Select the location you want to export your file to and close the file selection dialog by clicking on Ok.

Comment

• If you rather want to copy the text content in order to later paste it in another program, click on Copy to
clipboard; note that in this case, the encoding is by default utf8 and cannot be changed.

• The default column delimiter is \t but this can be modified to either comma (,) or semi-colon (;) by ticking
the Advanced settings checkbox in the Convert instance’s interface, then selecting the desired delimiter in the
Column delimiter drop-down menu (Export section).

See also

• Reference: Convert widget

• Reference: Table construction widgets

• Cookbook: Text input

• Cookbook: Segmentation manipulation

• Cookbook: Text analysis

1.4. Cookbook 89

Orange3-Textable Documentation, Release 3.1.11

1.5 Case studies

This section aims to provide a repository of use cases illustrating the application of Orange Textable to realistic text
analysis problems. The focus here is not so much on “how to” as it is on “why”. Each case study comes with a
downloadable Orange Textable scheme that can be studied interactively and adapted to the specific needs of the user.

1.5.1 Term frequency comparison in Melville’s Moby Dick

(This use case was designed with the help of Douglas Duhaime and the following text was slightly adapted from a
description kindly contributed by him.)

This case study is adapted from Matthew Jocker’s excellent work Text Analysis with R for Students of Literature (46).
The goal here is to visualize the frequency of the terms “Ahab” and “whale(s)” within Herman Melville’s masterpiece
Moby Dick. The workflow reproduced on figure 1 below retrieves the text from Project Gutenberg, splits the work into
its constitutive chapters, and measures the degree to which each of the target terms appears in each chapter.1

Fig. 72: Figure 1: Orange Textable workflow for visualizing term frequency in Moby Dick.

Clicking on the Scatter Plot instance, one can easily see the relative frequency of the term whale(s) in each chapter
of Melville’s novel (see figure 2 below). By toggling the Y-axis Attribute dropdown box, one can select Ahab and
visualize the frequency of Ahab in the novel.

Although one might have supposed that the distribution of Captain Ahab would closely resemble that of whales within
the novel, the plots above tell a different story. While Ahab is most present in early and then later chapters, whales
are most present in the novel’s middle chapters, creating something of an inverse relationship between the two. For
the literary critic, this relationship offers new evidence with which to evaluate the strategy and structure of Melville’s
novel.

1.5.2 Stylometric analysis of Shakespeare’s Titus Andronicus

(This use case was designed with the help of Douglas Duhaime and the following text was slightly adapted from a
description kindly contributed by him.)

This is a case study in “stylometry”, or the quantitative analysis of a writer’s style. The data to be analyzed is William
Shakespeare’s play Titus Andronicus, which scholars have long believed William Shakespeare did not write alone.

1 The schema can be downloaded from here.

90 Chapter 1. Contents

http://douglasduhaime.com/
https://www.gutenberg.org/
http://douglasduhaime.com/

Orange3-Textable Documentation, Release 3.1.11

Since the publication of John Robertson’s study Did Shakespeare Write Titus Andronicus, many have believed that
particular scenes within the text have been written by other playwrights of the time: many believe that Act 1 Scene 1,
for instance, was written by Shakespeare’s contemporary George Peele.

In order to test this hypothesis, the following Orange Textable workflow measures the degree to which the language
in each scene within Titus Andronicus resembles the language within each other scene (figure 1 below).1 By changing
the Mode parameter within the Intersect instance, one can elect to focus only on content words or stopwords, and
by changing the Distance Metrics parameter within the Example Distance isntance, one can change the similarity
metric for the language comparison. Finally, by clicking on the Distance Map icon within this workflow, one can see
at a glance how distinct the vocabulary within each scene is.

Comparing the stopwords within each scene using a normalized Euclidean distance metric, one finds that Act 1 Scene
1 is indeed a significant outlier within Titus Andronicus. The scene remains an outlier when one performs TF-IDF
normalization on the term-document matrix (within the Convert instance), and when one uses a normalized Manhattan
distance metric. Iterating through each of the various distance metrics, and toggling between different normalization
metrics, Act 1 Scene 1 remains the most consistent outlier. This adds further evidence to the argument that the scene’s
stylistic fingerprint departs from that of that of the rest of the play.

1.6 Reference

This part of the documentation explains the effect of every control of each Orange Textable widget. Widgets making
up Orange Textable are grouped into 4 main categories based on the type of functionality they offer. A section of this
part of the documentation covers each such category. The last section documents the details of JSON formats that can
be used for the configuration of some of Orange Textable’s widgets.

1 The schema can be downloaded from here.

1.6. Reference 91

Orange3-Textable Documentation, Release 3.1.11

Fig. 73: Figure 2: Negative correlation between the relative frequency of terms whale(s) (top) and Ahab (bottom) in
Melville’s novel.

Fig. 74: Figure 1: Orange Textable workflow for the stylometric analysis of Titus Andronicus*.

92 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 75: Figure 2: Act 1 Scene 1 is a consistent stylistic outlier in Shakespeare’s play.

1.6.1 Text import widgets

The common purpose of widgets of this category is to import text data in Orange Canvas, either from the keyboard
(Text Field), from files (Text Files), or from the Internet (URLs). They all emit Segmentation data.

Text Field

Import text data from keyboard input.

Signals

Inputs:

• Text data

Segmentation containing text to be edited

Outputs:

• Text data

Segmentation covering the input text

1.6. Reference 93

Orange3-Textable Documentation, Release 3.1.11

Description

This widget allows the user to import keyboard collected data. It emits a segmentation containing a single unannoted
segment covering the whole string. Secondarily, Text Field can be used to manually edit a previously imported string.

The interface of the widget is divided in two zones (see figure 1 below). The upper part is a text field editable by the
user. The standard editing functions (copy, paste, cancel, etc.) are accessible through a right-click on the field.

Fig. 76: Figure 1: Interface of the Text field widget.

The Field section allows the user to copy or manually edit texts. The text can be segmented using a character.

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface (editing of the text or label modification).

94 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

It should be noted that the text field’s content is normalized in three ways:

• it is systematically converted to Unicode

• it is subjected to the canonical Unicode decomposition-recomposition technique (Unicode sequences such
as LATIN SMALL LETTER C (U+0063) + COMBINING CEDILLA (U+0327) are systematically re-
placed by the combined equivalent, e.g. LATIN SMALL LETTER C WITH CEDILLA (U+00C7))

• various forms of line endings (in particular \r\n and \r) are converted to a single form (namely \n)

When an instance of Text Field receives a segmentation on an incoming connection, the contents of all incoming
segments are concatenated (without adding any delimiters) and the resulting string replaces the current textual content
of the widget (if any). This allows the user to manually edit text that has been previously imported in Orange Textable.
Some points are worth noting:

• This operation creates a distinct string from the one that has been previously imported: it really amounts to
copying the original string and making the copy available for manual edition. As such, it is prone to a very
specific and possibly disconcerting type of error, which can be best understood by studying the example given
in the documentation of Preprocess (section Caveat), where what is said about Preprocess also applies to Text
Field.

• Modifications brought from within the interface of Text Field to a string imported in this way will be lost if
the Text Field instance receives a new input on its incoming connection. In particular, this will happen if the
schema is saved and later re-opened. To avoid any loss of data, the safest way to operate is to remove the
incoming connection as soon as it has been created and the string has been copied in the Text Field instance’s
interface; indeed, removing the incoming connection will not remove the imported string from the instance’s
interface, where it can then be edited without risking to overwrite it.

Messages

Information

Data correctly sent to output: 1 segment (<n> characters). This confirms that the widget has operated properly.

No data sent to output yet: text field is empty. The widget instance is not able to emit data to output because no text
has been entered in the text field.

Examples

• Getting started: Keyboard input and segmentation display

• Cookbook: Import text from keyboard

See also

• Getting started: Merging segmentations together

• Getting started: Annotating by merging

• Getting started: Converting XML markup to annotations

• Reference: Preprocess (section “Caveat”)

1.6. Reference 95

http://unicode.org/reports/tr15

Orange3-Textable Documentation, Release 3.1.11

Text Files

Import data from raw text files.

Signals

Inputs:

• Message

JSON Message controlling the list of imported text files

Outputs:

• Text data

Segmentation covering the content of imported text files

Description

This widget is designed to import the contents of one or several text files in Orange Canvas. It outputs a segmentation
containing a (potentially annotated) segment for each imported file. The imported textual content is normalized in
several ways:

• it is systematically converted to Unicode (from the encoding defined by the user)

• it is subjected to the canonical Unicode decomposition-recomposition technique (Unicode sequences such
as LATIN SMALL LETTER C (U+0063) + COMBINING CEDILLA (U+0327) are systematically re-
placed by the combined equivalent, e.g. LATIN SMALL LETTER C WITH CEDILLA (U+00C7))

• it is stripped from the utf8 byte-order mark (if any)

• various forms of line endings (in particular \r\n and \r) are converted to a single form (namely \n)

The interface of Text files is available in two versions, according to whether or not the Advanced Settings checkbox
is selected.

Basic interface

In its basic version (see figure 1 below), the Text Files widget is limited to the import of a single file. The interface
contains a Source section enabling the user to select the input file. The Browse button opens a file selection dialog; the
selected file then appears in the File path text field (it can also be directly inputted with the keyboard). The Encoding
drop-down menu enables the user to specify the encoding of the file.

The user can define the label of the output segmentation (Options) by checking the Advanced settings.

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface.

The text below the Send button indicates the number of characters in the single segment contained in the output
segmentation, or the reasons why no segmentation is emitted (no input data, encoding issue, etc.).

96 Chapter 1. Contents

http://unicode.org/reports/tr15
https://en.wikipedia.org/wiki/Byte_order_mark#UTF-8

Orange3-Textable Documentation, Release 3.1.11

Fig. 77: Figure 1: Text files widget (basic interface).

1.6. Reference 97

Orange3-Textable Documentation, Release 3.1.11

Advanced interface

The advanced version of Text Files allows the user to import several files in a determined order; each file can moreover
be associated to a distinct encoding and specific annotations. The emitted segmentation contains a segment for each
imported file.

Fig. 78: Figure 2: Text files widget (advanced interface).

The advanced interface (see figure 2 above) presents similarities with that of the URLs, Recode, and Segment widgets.
The Sources section allows the user to select the input file(s) as well as their encoding, to determine the order in which
they appear in the output segmentation, and optionally to assign an annotation. The list of imported files appears at
the top of the window; the columns of this list indicate (a) the name of each file, (b) the corresponding annotation (if
any), and (c) the encoding with which each is associated.

In figure 2, we can see that two files are imported and that each is provided with an annotation whose key is author.
The first file associates value Dickens with this key and is encoded in utf-8; the second one has value Fitzgerald and is
encoded in iso-8859-1.

98 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

The first buttons on the right of the imported files’ list enable the user to modify the order in which they appear in the
output segmentation (Move Up and Move Down), to delete a file from the list (Remove) or to completely empty it
(Clear All). Except for Clear All, all these buttons require the user to previously select an entry from the list. Import
List enables the user to import a file list in JSON format (see JSON im-/export format, File list) and to add it to the
previously selected sources. In the opposite Export List enables the user to export the source list in a JSON file.

The remainder of the Sources section allows the user to add new files to the list. The easiest way to do so is to first
click on the Browse button, which opens a file selection dialog. After having selected one or more files in this dialog
and validated the choice by clicking on Open, the files appear in the File paths field and can be added to the list by
clicking on the Add button. It is also possible to type the complete paths of the files directly in the text field, separating
the paths corresponding to the successive files with the string ” ” (space + slash + space).

Before adding one or more files to the list by clicking on Add, it is possible to select their encoding (Encoding), and to
assign an annotation by specifying its key in the Annotation key field and the corresponding value in the Annotation
value field. These three parameters (encoding, key, value) will be applied to each file appearing in the File paths field
at the moment of their addition to the list with Add.

The Options section allows the user to specify the label affected to the output segmentation. The Import filenames
with key checkbox enables the program to create for each imported file an annotation whose value is the file name (as
displayed in the list) and whose key is specified by the user in the text field on the right of the checkbox. Similarly the
button Auto-number with key enables the program to automatically number the imported files and to associate the
number to the annotation key specified in the text field on the right.

In figure 2, it was thus decided to assign the label novels to the output segmentation, and to associate the name of each
file to the annotation key filename. On the other hand, the auto-numbering option has not been enabled.

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface.

The text below the Send button indicates the length of the output segmentation in characters, or the reasons why no
segmentation is emitted (no selected file, encoding issue, etc.). In the example, the two segments corresponding to the
imported files thus total up to 1’262’145 characters.

Remote control

Text Files is one the widgets that can be controlled by means of the Message widget. Indeed, it can receive in input
a message consisting of a file list in JSON format (see JSON im-/export format, File list), in which case the list
of files specified in this message replaces previously imported sources (if any). Note that removing the incoming
connection from the Message instance will not, by itself, remove the list of files imported in this way from the Text
Files instance’s interface; conversely, this list of files can be modified using buttons Move up/down, Remove, etc.
even if the incoming connection from the Message instance has not been removed. Finally, note that if a Text Files
instance has the basic version of its interface activated when an incoming connection is created from an instance of
Message, it automatically switches to the advanced interface.

Messages

Information

Data correctly sent to output: <n> segments (<m> characters). This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

1.6. Reference 99

Orange3-Textable Documentation, Release 3.1.11

No data sent to output yet: no file selected. The widget instance is not able to emit data to output because no input
file has been selected.

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings and Errors below).

Warnings

No label was provided. A label must be entered in the Output segmentation label field in order for computation and
data emission to proceed.

No annotation key was provided for auto-numbering. The Auto-number with key checkbox has been selected and
an annotation key must be specified in the text field on the right in order for computation and data emission to
proceed.

JSON message on input connection doesn’t have the right keys and/or values. The widget instance has received a
JSON message on its Message input channel and the keys and/or values specified in this message do not
match those that are expected for this particular widget type (see JSON im-/export format, File list).

JSON parsing error. The widget instance has received data on its Message input channel and the data couldn’t be
correctly parsed. Please use a JSON validator to check the data’s well-formedness.

Errors

Couldn’t open file or Couldn’t open file ‘<filepath>’. A file couldn’t be opened and read, typically because the spec-
ified path is wrong.

Encoding error or Encoding error: file ‘<filepath>’. A file couldn’t be read with the specified encoding (it must be
in another encoding).

Examples

• Cookbook: Import text from file

See also

• Reference: JSON im-/export format, File list

• Reference: Message widget

URLs

Fetch text data from internet locations.

100 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Signals

Inputs:

• Message

JSON Message controlling the list of imported URLs

Outputs:

• Text data

Segmentation covering the content of imported URLs

Description

This widget is designed to import the contents of one or several internet locations (URLs) in Orange Canvas. It outputs
a segmentation containing a potentially annotated) segment for the content of each selected URL. The imported textual
content is normalized in several ways:

• it is systematically converted to Unicode (from the encoding defined by the user)

• it is subjected to the canonical Unicode decomposition-recomposition technique (Unicode sequences such
as LATIN SMALL LETTER C (U+0063) + COMBINING CEDILLA (U+0327) are systematically re-
placed by the combined equivalent, e.g. LATIN SMALL LETTER C WITH CEDILLA (U+00C7))

• it is stripped from the utf8 byte-order mark (if any)

• various forms of line endings (in particular \r\n and \r) are converted to a single form (namely \n)

The interface of URLs is available in two versions, according to whether or not the Advanced Settings checkbox is
selected.

Basic interface

In its basic version (see figure 1 below), the URLs widget is limited to the import of a single URL’s content. The
interface contains a Source section enabling the user to type the input URL and to select the encoding of its content.

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface.

Below the Send button, the user finds the number of characters in the single segment contained in the output segmen-
tation, or the reasons why no segmentation is emitted (inability to retrieve the data, encoding issue, etc.).

Advanced interface

The advanced version of URLs allows the user to import the content of several URLs in a determined order; each
URL can moreover be associated to a distinct encoding and specific annotations. The emitted segmentation contains a
segment for the content of each imported URL.

The advanced interface (see figure 2 above) presents similarities with that of the Text Files, Recode, and Segment
widgets. The Sources section allows the user to specify the imported URL(s) as well as their content’s encoding, to
determine the order in which they appear in the output segmentation, and optionally to assign an annotation. The list of
imported URLs appears at the top of the window; the columns of this list indicate (a) the URL, (b) the corresponding
annotation (if any), and (c) the encoding with which the content of each is associated.

1.6. Reference 101

http://unicode.org/reports/tr15
https://en.wikipedia.org/wiki/Byte_order_mark#UTF-8

Orange3-Textable Documentation, Release 3.1.11

Fig. 79: Figure 1: URLs widget (basic interface).

In figure 2, we can see that two URLs are imported (only the end of each URL is visible on the figure) and that each is
provided with an annotation whose key is author. The first URL associates value Dickens with this key and is encoded
in utf-8; the second one has value Fitzgerald and is encoded in iso-8859-1.

The first buttons on the right of the imported URLs’ list enable the user to modify the order in which they appear in the
output segmentation (Move Up and Move Down), to delete an URL from the list (Remove) or to completely empty it
(Clear All). Except for Clear All, all these buttons require the user to previously select an entry from the list. Import
List enables the user to import a list of URLs in JSON format (see JSON im-/export format, URL list) and to add it to
the previously selected sources. In the opposite Export List enables the user to export the source list in a JSON file.

The remainder of the Sources section allows the user to add new URLs to the list. these must first be inputted in the
field with the same name before they can be added to the list by clicking on the Add button. In order for several URLs
to be simultaneously added, they must be separated by the string ” / ” (space + slash + space).

Before adding one or more URLs to the list by clicking on Add, it is possible to select their encoding (Encoding),
and to assign an annotation by specifying its key in the Annotation key field and the corresponding value in the
Annotation value field. These three parameters (encoding, key, value) will be applied to each URL appearing in the
URLs field at the moment of their addition to the list with Add.

The Import URLs with key checkbox enables the program to create for each imported URL an annotation whose
value is the URL (as displayed in the list) and whose key is specified by the user in the text field on the right of the
checkbox. Similarly the button Auto-number with key enables the program to automatically number the imported
URLs and to associate the number to the annotation key specified in the text field on the right.

In figure 2, it was thus decided to assign the label novels to the output segmentation, and to associate the name of each
URL to the annotation key url. On the other hand, the auto-numbering option has not been enabled.

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface.

Below the Send button, the user finds the length of the output segmentation in characters, or the reasons why no
segmentation is emitted (inability to retrieve the data, encoding issue, etc.). In the example, the two segments corre-
sponding to the imported URLs’ content thus total up to 1’300’344 characters.

102 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 80: Figure 2: URLs widget (advanced interface).

1.6. Reference 103

Orange3-Textable Documentation, Release 3.1.11

Remote control

URLs is one the widgets that can be controlled by means of the Message widget. Indeed, it can receive in input
a message consisting of a URL list in JSON format (see JSON im-/export format, URL list), in which case the list
of URLs specified in this message replaces previously imported sources (if any). Note that removing the incoming
connection from the Message instance will not, by itself, remove the list of URLs imported in this way from the URLs
instance’s interface; conversely, this list of files can be modified using buttons Move up/down, Remove, etc. even if
the incoming connection from the Message instance has not been removed. Finally, note that if an URLs instance has
the basic version of its interface activated when an incoming connection is created from an instance of Message, it
automatically switches to the advanced interface.

Messages

Information

Data correctly sent to output: <n> segments (<m> characters). This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no URL selected. The widget instance is not able to emit data to output because no input
URL has been selected.

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings and Errors below).

Warnings

No label was provided. A label must be entered in the Output segmentation label field in order for computation and
data emission to proceed.

No annotation key was provided for auto-numbering. The Auto-number with key checkbox has been selected and
an annotation key must be specified in the text field on the right in order for computation and data emission to
proceed.

JSON message on input connection doesn’t have the right keys and/or values. The widget instance has received a
JSON message on its Message input channel and the keys and/or values specified in this message do not
match those that are expected for this particular widget type (see JSON im-/export format, File list).

JSON parsing error. The widget instance has received data on its Message input channel and the data couldn’t be
correctly parsed. Please use a JSON validator to check the data’s well-formedness.

Errors

Couldn’t retrieve <URL>. An URL couldn’t be retrieved and read, possibly because it is incorrect, or because the
internet connexion has not been working properly.

Encoding error or Encoding error: <URL>. An URL couldn’t be read with the specified encoding (it must be in
another encoding).

104 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Examples

• Cookbook: Import text from internet location

See also

• Reference: JSON im-/export format, URL list

• Reference: Message widget

1.6.2 Segmentation processing widgets

Widgets of this category take Segmentation data in input and emit data of the same type. Some of them (Preprocess
and Recode) generate modified text data. Others (Merge, Segment, Select, Intersect and Extract XML) do not generate
new text data but only new Segmentation data. Display, finally, is mainly used to visualize (or export) the details of a
given Segmentation object (content and address of segments, as well as their possible annotations).

Preprocess

Basic text preprocessing.

Signals

Inputs:

• Segmentation

Segmentation covering the text that should be preprocessed

Outputs:

• Text data

Segmentation covering the modified text

Description

This widget inputs a segmentation, creates a modified copy of the content of the segmentation, and outputs a new
segmentation corresponding to the modified data. The possible modifications are on the case (lower case/upper case)
and the replacing of accentuated characters by their non-accentuated equivalents.

Note that Preprocess creates a copy of each modified segment, which increases the program’s memory footprint;
moreover this widget can only work on segmentations without any overlap, which means no part of the text is covered
by more than one segment.

the Transform case checkbox triggers the systematic modification of the case: select to lower to convert every
character to lower case and to upper to convert them to upper case. The Remove accents checkbox controls the
replacement of accentuated character by their non-accentuated equivalents (é -> e, ç -> c, etc.).

1.6. Reference 105

Orange3-Textable Documentation, Release 3.1.11

Fig. 81: Figure 1: Interface of the Preprocess widget.

The Copy annotations button copies all the annotations of the input segmentation to the output segmentation; it is
only accessible when the Advanced settings checkbox is selected (otherwise the annotations are by default copied).

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface or when its input data are modified (by deletion or addition of a connection, or because
modified data is received through an existing connection).

Below the Send button, the user finds the number of segments present in the output segmentation, or the reasons why
no segmentation is emitted (no input data, overlaps in the input segmentation, etc.).

Caveat

As one of the rare widgets of Textable that do create new strings and not only new segmentations, Preprocess is prone
to a very specific and possibly disconcerting type of error, which can be best understood by studying an example.

Suppose that you wish to count word frequency in the content of two Text Field instances–a scenario similar to that
illustrated in section Counting in specific contexts. You could use Merge to combine the Text Field instances’ output
in a single segmentation (see figure 2 below), then segment the latter into words with Segment. You would eventually
feed both the segmentation emitted by Segment (specifying units) and by Merge (specifying contexts) to an instance
of Count for building the frequency table.

Moreover, suppose that you want to convert the input texts to lower case before counting word frequency. An intuitive
way of performing this is by inserting a Preprocess instance between Merge and Segment as on figure 3 below.
However, because Preprocess creates a new string for each input segment and emits a segmentation that refers to
these new strings, this raises a rather insidious issue.

106 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 82: Figure 2: Counting words in the content of two Text Field instances.

Fig. 83: Figure 3: WRONG way of inserting a Preprocess instance in the schema.

1.6. Reference 107

Orange3-Textable Documentation, Release 3.1.11

To no effect, Count will attempt to find occurrences of the units specified by the segmentation received from Segment
in the contexts specified by the segmentation received from Merge; since those actually belong to distinct strings, none
of these units occurs in any of these contexts and the frequency table will remain hopelessly empty (as indicated by
the warning symbol on top of the Count widget instance).

Luckily, a small wiring modification suffices to entirely solve the problem: the connection between Merge and Count
should simply be replaced by a direct connection between Preprocess and Count, as on figure 4 below. This way,
units and contexts refer to the same set of strings and occurrences of the ones can be properly counted in the others.

Fig. 84: Figure 4: RIGHT way of inserting Preprocess.

Messages

Information

Data correctly sent to output: <n> segments. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings below).

Warnings

No label was provided. A label must be entered in the Output segmentation label field in order for computation and
data emission to proceed.

Input segmentation is overlapping. At least two of the input segments cover the same substring, which this widget
cannot handle. Make sure every input segment covers a distinct substring.

108 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Examples

• Getting started: Merging segmentations together

• Getting started: Annotating by merging

• Cookbook: Merge several texts

See also

• Getting started: Tagging table rows with annotations

Examples

• Cookbook: Convert text to lower or upper case

• Cookbook: Remove accents from text

See also

• Getting started: Counting in specific contexts

• Reference: Text Field widget

• Reference: Merge widget

• Reference: Segment widget

• Reference: Count widget

Recode

Custom text recoding using regular expressions.

Signals

Inputs:

• Segmentation

Segmentation covering the text that should be recoded

• Message

JSON Message controlling the list of substitutions

Outputs:

• Recoded text data

Segmentation covering the recoded text

1.6. Reference 109

Orange3-Textable Documentation, Release 3.1.11

Description

This widget inputs a segmentation, creates a modified copy of its content, and outputs a new segmentation correspond-
ing to the modified data. The modifications applied are defined by substitutions, namely pairs composed of a regular
expression (designed to identify portions of text that should be modified) and a replacement string.

It is possible to “capture” text portions using parentheses appearing in the regular expressions, in order to insert them
in the replacement strings, where sequences &1, &2, etc. correspond to the successive pairs of parentheses (numbered
on the basis of the position of the opening parenthesis).

Note that Recode creates a copy of each modified segment, which increases the program’s memory footprint; moreover
this widget can only work on segmentations without any overlap, which means no part of the text is covered by more
than one segment.

The interface of Recode is available in two versions, according to whether or not the Advanced Settings checkbox is
selected.

Basic interface

The basic version of the widget is limited to the application of a single substitution. Section Substitution (see fig-
ure 1 below) allows the user to specify the regular expression (Regex) and the corresponding replacement string
(Replacement string). If the replacement string is left empty, the text parts identified by the regular expression will
simply be deleted; it is the case in the example of figure 1, which leads to the deletion of XML/HTML tags.1

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface or when its input data are modified (by deletion or addition of a connection, or because
modified data is received through an existing connection).

Below the Send button, the user finds all the indications regarding the current status of the widget instance (see
Messages below, section Information).

Advanced interface

In its advanced version, the Recode widget allows the user to define several substitutions and to determine the order
in which they should successively be applied to each segment of the input segmentation.

The advanced interface (see figure 2 above) presents similarities with that of the Text Files, URLs, and Segment widgets.
The Substitutions section allows the user to define the substitutions applied to each successive input segment and to
determine their application order. In the list displayed at the top of the window, each line specifies a substitution,
and the columns indicate for each substitution (a) the corresponding regular expression, (b) the (possibly empty)
replacement string, and (c) the options associated with the regular expression.2

On figure 2 above, we can see that three substitutions have been specified. The first deletes XML/HTML tags (it
replaces them with the empty string). The second replaces occurrences of British English forms (behaviour, colour,
and neighbour, possibly capitalized, since the Ignore case option is selected) with their American English variants
(behavior, color, and neighbor), while the last replaces sequences like a X of mine with my X; thus they illustrate the
possibility to “capture” text portions through parentheses appearing in the regular expression.

To take a concrete example, the successive application of these three substitutions to string

<example>I've just met a neighbour of mine.</example>

1 For more details concerning the regular expression syntax, see the Python documentation. Note that option -u (Unicode dependent) is activated
by default.

2 For more details on the effect of options -i, -u, -m, and -s, see the Python documentation.

110 Chapter 1. Contents

http://docs.python.org/library/re.html
http://docs.python.org/library/re.html

Orange3-Textable Documentation, Release 3.1.11

Fig. 85: Figure 1: Recode widget (basic interface).

1.6. Reference 111

Orange3-Textable Documentation, Release 3.1.11

Fig. 86: Figure 2: Recode widget (basic interface).

112 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

will produce in turns the modified versions

I've just met a neighbour of mine.

I've just met a neighbor of mine.

I've just met my neighbor.

The first buttons on the right of the substitution list allow the user to modify the order in which they are successively
applied to each segment of the input segmentation (Move Up and Move Down), to delete a substitution from the list
(Remove) or to empty it entirely (Clear All). Except for Clear All, all of these buttons require the selection of an
entry in the list beforehand. Import List enables the user to import a list of substitutions in JSON format (see JSON
im-/export format, Substitution list) and to add them to those already selected. Export List enables the user on the
contrary to export the list of substitutions in a JSON format file.

The remaining part of the Substitutions section allows the user to add new substitutions to the list. To define a new
substitution, one must specify the regular expression (Regex) and the corresponding replacement string (Replacement
string); the latter can be left empty, in which case the text portions identified by the regular expression will simply be
deleted. The Ignore case (i), Unicode dependent (u), Multiline (m) and Dot matches all (s) checkboxes control the
application of the corresponding options to the regular expression. Adding the new substitution to the list is achieved
by clicking on the Add button.

The Options section allows the user to define the output segmentation label. The Copy annotations checkbox copies
every annotation of the input segmentation to the output segmentation.

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface or when its input data are modified (by deletion or addition of a connection, or because
modified data is received through an existing connection).

Below the Send button, the user finds all the indications regarding the current status of the widget instance (see
Messages below, section Information).

Remote control

Recode is one the widgets that can be controlled by means of the Message widget. Indeed, it can receive in input a
message consisting of a substitution list in JSON format (see JSON im-/export format, Substitution list), in which case
the list of substitutions specified in this message replaces those previously specified (if any). Note that removing the
incoming connection from the Message instance will not, by itself, remove the list of substitutions imported in this
way from the Recode instance’s interface; conversely, this list of files can be modified using buttons Move up/down,
Remove, etc. even if the incoming connection from the Message instance has not been removed. Finally, note that
if a Recode instance has the basic version of its interface activated when an incoming connection is created from an
instance of Message, it automatically switches to the advanced interface.

Caveat

As one of the rare widgets of Textable that do create new strings and not only new segmentations, Recode is prone to
a very specific and possibly disconcerting type of error, which can be best understood by studying the example given
in the documentation of Preprocess (section Caveat), where all that is said about Preprocess also applies to Recode.

Messages

1.6. Reference 113

Orange3-Textable Documentation, Release 3.1.11

Information

Data correctly sent to output: <n> segments. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings and Errors below).

Warnings

No label was provided. A label must be entered in the Output segmentation label field in order for computation and
data emission to proceed.

Input segmentation is overlapping. The instance’s input segmentation contains overlapping segments, which pre-
empts the application of recoding operations.

JSON message on input connection doesn’t have the right keys and/or values. The widget instance has received a
JSON message on its Message input channel and the keys and/or values specified in this message do not
match those that are expected for this particular widget type (see JSON im-/export format, Substitution list).

JSON parsing error. The widget instance has received data on its Message input channel and the data couldn’t be
correctly parsed. Please use a JSON validator to check the data’s well-formedness.

Errors

Regex error: <error_message>. The regular expression entered in the Regex field is invalid.

Regex error: <error_message> (substitution #<n>). The n-th regular expression in the Substitutions list is invalid.

Reference to unmatched group in replacement string. A replacement string specified by the user contains a refer-
ence to a numbered variable (&1, &2, . . .) which turns out to not always have a matching element.

Examples

• Cookbook: Replace all occurrences of a string/pattern

See also

• Reference: JSON im-/export format, Substitution list

• Reference: Message widget

• Reference: Preprocess (section “Caveat”)

• Getting started: A note on regular expressions

114 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Footnotes

Merge

Merge two or more segmentations.

Signals

Inputs:

• Segmentation (multiple)

Any number of segmentations that should be merged together

Outputs:

• Merged data

Merged segmentation

Description

This widget takes several input segmentations, successively copies each segment of each input segmentation to form
a new segmentation, and sends this segmentation to its output connections.

The Options section allows the user to import and label segments. The Import labels with key checkbox enables the
user to create for each input segmentation an annotation whose value is the segmentation label (as displayed in the
list) and whose key is specified by the user in the text field on the right of the checkbox. Similarly, the Auto-number
with key checkbox enables the program to automatically number the output segments and to associate the number
to the annotation key specified in the text field on the right. The Copy annotations checkbox copies every input
segmentation annotation to the output segmentation.
1 The Fuse duplicate segments checkbox enables the program to fuse into a single segment several distinct segments
whose addresses are the same; the annotations associated to the fused segments are all copied in the single resulting
segment.2

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface or when its input data are modified (by deletion or addition of a connection, or because
modified data is received through an existing connection).

Below the Send button, the user finds the number of segments in the output segmentation, or the reasons why no
segmentation is emitted (no input data, no label specified for the output segmentation, etc.).

1 Note that if sorting is enabled, it may well result in segments being ordered in a different way than specified by the user in the Ordering
section.

2 In the case where the fused segments have distinct values for the same annotation key, only the value of the last segment (in the order of the
output segmentation before fusion) will be retained.

1.6. Reference 115

Orange3-Textable Documentation, Release 3.1.11

Fig. 87: Figure 1: Merge widget (advanced interface).

116 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Messages

Information

Data correctly sent to output: <n> segments. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings below).

Warnings

No label was provided. A label must be entered in the Output segmentation label field in order for computation and
data emission to proceed.

No annotation key was provided for imported labels. The Import labels with key checkbox has been selected and
an annotation key must be specified in the text field on the right in order for computation and data emission to
proceed.

No annotation key was provided for auto-numbering. The Auto-number with key checkbox has been selected and
an annotation key must be specified in the text field on the right in order for computation and data emission to
proceed.

Examples

• Getting started: Merging segmentations together

• Getting started: Annotating by merging

• Cookbook: Merge several texts

See also

• Getting started: Tagging table rows with annotations

Footnotes

Segment

Subdivide a segmentation using regular expressions.

1.6. Reference 117

Orange3-Textable Documentation, Release 3.1.11

Signals

Inputs:

• Segmentation

Segmentation that should be further segmented

• Message

JSON Message controlling the list of regular expressions

Outputs:

• Segmented data

Segmentation containing the newly created segments

Description

This widget inputs a segmentation and creates a new segmentation by subdividing each original segment into a series
of new segments. By default, it works on the basis of a description of the form of the new segments (by means of
regular expressions); alternatively, it can also operate based on a description of the separators that appear in-between
the segments. It also allows the user to create annotations for the output segments.

In the same way as for the Recode widget, it is possible to “capture” text portions with square brackets used in a regular
expression, notably to copy them in the annotation key and/or in the associated value; for this we use the notations
&1, &2, etc. corresponding to the pairs of successive brackets (numbered on the basis of the position of opening
parentheses) of the regular expression.1

The interface of Segment is available in two versions, according to whether or not the Advanced Settings checkbox
is selected.

Basic interface

The basic version of the widget permits to choose between four types of Text Data segmentation output. The Segment
into Letters option segments text data into letters; the Segment into Words option segments text data into words (which
is mandatory in order to count segments, see cookbook); the Segment into lines option segments text data into lines.
Eventually, Use a regular expression opens a short Regex section (see figure 1 below). This Regex can be a particular
string of characters (a word) or a regular expression. For instance,‘‘w+‘‘ creates a segment for each word of each input
segment (to be precise: each continuous sequence of alphanumerical characters and underscores).2

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface or when its input data are modified (by deletion or addition of a connection, or because
modified data is received through an existing connection).

Below the Send button the user finds all the indications regarding the current status of the widget instance (see Mes-
sages below, section Information).

1 This possibility does not apply when the widget is configured to identify the separators rather than the segments themselves (Mode: Split, see
Advanced interface).

2 It should be noted that the -u (Unicode dependent) option is activated by default (see Python documentation).

118 Chapter 1. Contents

http://docs.python.org/library/re.html#re.UNICODE

Orange3-Textable Documentation, Release 3.1.11

Fig. 88: Figure 1: Segment widget (basic interface).

1.6. Reference 119

Orange3-Textable Documentation, Release 3.1.11

Advanced interface

In its advanced version, the widget enables the user to define several regular expressions and to determine the order in
which they should successively be applied to each segment of the input segmentation. It also allows the user to specify
if a given regular expression describes the form of the targeted segments (Tokenize mode) or rather the form of the
separators in-between these segments (Split mode).3

The advanced interface (see figure 2 above) presents similarities with that of the Text Files, URLs, and Recode widgets.
The Regexes section allows the user to define the regular expressions applied successively to each segment of the input
segmentation and to determine their application order. In the list which appears on top of the window, the columns
indicate (a) the mode associated to this regular expression, namely t for Tokenize (default) or s for Split, (b) the actual
expression, (c) the corresponding annotation (if any), and (d) the options associated to this expression.

On figure 2 above, we can thus see that four regular expressions have been defined, each in the Tokenize mode; each
identifies a type of character in the input segmentation and assigns to it an annotation whose key is type. The character
classes identified by the four expressions are not mutually exclusive, however after having successively applied them,
the widget automatically sorts the segments (exactly like the Sort segments option of the Merge widget) and fuses
those whose addresses are identical, given that the Fuse duplicates option is selected, which triggers the fusion of
segments with identical addresses (see below). In the end, each character thus belongs to a single segment, whose
value for the annotation key type is the last one that was assigned to it according to the regular expressions application
order.

The first of the four expressions (.) creates a segment for each character and assigns the annotation value other to it.
The second (\w) creates a segment for each alphanumerical character, and assigns the annotation value consonant to
it. The last two respectively identify vowels ([aeiouy]) and digits ([0-9]) and annotate them as such. To illustrate
the mechanism explained in the previous paragraph, it can be noted that before segment sorting and duplicate fusion,
each vowel of the input segmentation is associated with three segments whose values for the annotation key type are
(in order) other, consonant, and vowel; after sorting and fusion, only the last of these values is retained.

The first buttons on the right of the list of regular expressions allow the user to modify the order in which they are
successively applied to each segment of the input segmentation (Move Up and Move Down), to delete an expression
from the list (Remove) or to empty it entirely (Clear All). Except for Clear All, all of these buttons require the
selection of an entry in the list beforehand. Import List enables the user to import a list of regular expressions in
JSON format (see JSON im-/export format, Regular expression list) and to add them to those already selected. Export
List enables the user on the contrary to export the list of regular expressions in a JSON file.

The remaining part of the Regexes section allows the user to add new regular expressions to the list. To do so, the
regular expression should be specified (Regex) as well as, optionally, the annotation key and the corresponding value
(Annotation key and value). The Ignore case (i), Unicode dependent (u), Multiline (m) and Dot matches all (s)
checkboxes control the application of the corresponding options to the regular expressions. Adding the new regular
expression to the list is executed by finally clicking on the Add button.

Through the Options section, the Auto-number with key checkbox enables the program to automatically number
the output segments and to associate the number to the annotation key specified in the text field on the right. The
Import annotations checkbox copies the annotations of each input segment to the corresponding output segments.
The Fuse duplicate segments checkbox enables the program to fuse into a single segment several distinct segments
whose addresses are identical; the annotations associated to the fused segments are all copied in the single resulting
segment.4

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface or when its input data are modified (by deletion or addition of a connection, or because
modified data is received through an existing connection).

3 NB: in Split mode, empty segments that might occur between two consecutive occurrences of separators are automatically removed (this is
because the data model adopted by Orange Canvas cannot represent empty segments).

4 In the case where the fused segments have distinct values for the same annotation key, only the value of the last segment (in the order of the
output segmentation before fusion) will be retained.

120 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 89: Figure 2: Segment widget (advanced interface).

1.6. Reference 121

Orange3-Textable Documentation, Release 3.1.11

Below the Send button, the user finds indications regarding the current status of the widget instance (see Messages
below, section Information).

Remote control

Segment is one the widgets that can be controlled by means of the Message widget. Indeed, it can receive in input
a message consisting of a regular expression list in JSON format (see JSON im-/export format, Regular expression
list), in which case the list of regular expressions specified in this message replaces those previously specified (if any).
Note that removing the incoming connection from the Message instance will not, by itself, remove the list of regular
expressions imported in this way from the Segment instance’s interface; conversely, this list of files can be modified
using buttons Move up/down, Remove, etc. even if the incoming connection from the Message instance has not been
removed. Finally, note that if a Segment instance has the basic version of its interface activated when an incoming
connection is created from an instance of Message, it automatically switches to the advanced interface.

Messages

Information

Data correctly sent to output: <n> segments. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings and Errors below).

Warnings

No regex defined. A regular expression must be entered in the Regex field in order for computation and data emission
to proceed (in the advanced interface, the Add button must also be clicked).

No label was provided. A label must be entered in the Output segmentation label field in order for computation and
data emission to proceed.

No annotation key was provided for auto-numbering. The Auto-number with key checkbox has been selected and
an annotation key must be specified in the text field on the right in order for computation and data emission to
proceed.

JSON message on input connection doesn’t have the right keys and/or values. The widget instance has received a
JSON message on its Message input channel and the keys and/or values specified in this message do not
match those that are expected for this particular widget type (see JSON im-/export format, Regular expression
list).

JSON parsing error. The widget instance has received data on its Message input channel and the data couldn’t be
correctly parsed. Please use a JSON validator to check the data’s well-formedness.

122 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Errors

Regex error: <error_message>. The regular expression entered in the Regex field is invalid.

Regex error: <error_message> (regex #<n>). The n-th regular expression in the Regexes list is invalid.

Reference to unmatched group in annotation key and/or value. In the advanced interface, a regular expression has
been associated with an annotation key–value pair and in at least one of these terms reference is made to a
numbered variable (&1, &2, . . .) which turns out to not always have a matching element.

Examples

• Getting started: Segmenting data into smaller units

• Cookbook: Segment text in smaller units

See also

• Reference: JSON im-/export format, Regular expression list

• Reference: Message widget

• Getting started: A note on regular expressions

Footnotes

Select

Select a subset of segments in a segmentation.

Signals

Inputs:

• Segmentation

Segmentation out of which a subset of segments should be selected

Outputs:

• Selected data (default)

Segmentation containing the selected segments

• Discarded data

Segmentation containing the discarded segments

1.6. Reference 123

Orange3-Textable Documentation, Release 3.1.11

Description

This widget inputs a segmentation and creates a new segmentation including only some of the input segments. Segment
selection can be based on their content, their annotations, or their frequency; it can also be random. No matter which
method is used, the widget emits on a second output connection (not selected by default) a segmentation containing
the segments that were not selected.

The interface of Select is available in two versions, according to whether or not the Advanced Settings checkbox is
selected.

Basic interface

The basic version of the widget (see figure 1 below) is limited to the selection of segments based on a regular ex-
pression (see Method: Regex in section Advanced interface below). The differences with the advanced interface are
the following: (i) regular expression options are not accessible (-u, Unicode dependent, is nonetheless activated by
default); (ii) auto-numbering is disabled; and (iii) annotations are copied by default.

Fig. 90: Figure 1: Select widget (basic interface).

124 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Advanced interface

In its advanced version, the Select section of the widget interface comes in three versions depending on the value
chosen in the Method drop-down menu (see figures 2 to 4 below).

Fig. 91: Figure 2: Select widget (advanced interface, Regex method).

Method: Regex

This method consists of selecting the segments of the input segmentation whose content or annotations are matched
by a regular expression. The Mode drop-down menu (see figure 2 above) allows the user to specify if the segments
corresponding to the regular expression should be selected (Include) or not (Exclude), in which case the segments
that do not correspond to the regular expression will be selected.

The Annotation key drop-down menu allows the user to choose an annotation key from the input segmentation; in
that case, the segments whose annotation values for this key are matched by the regular expression will be selected (or
not). If the value (none) is selected, the content of the segments will be matched against the regular expression.

The Regex field is designed to specify the regular expression used for segment selection, and the Ignore case (i), Uni-
code dependent (u), Multiline (m) and Dot matches all (s) checkboxes control the application of the corresponding
options to this expression.

1.6. Reference 125

Orange3-Textable Documentation, Release 3.1.11

In the example of figure 2 above, the widget is configured to include (Mode: Include) from the input segmentation
the segments whose annotation value for key category (Annotation key: category) is either noun or verb (Regex:
^(noun|verb)$).

Method: Sample

This method consists of selecting the segments of the input segmentation with a random sampling process, such that
every input segment has the same probability of being selected or not.

Fig. 92: Figure 3: Select widget (advanced interface, Sample method).

The Sample size expressed as drop-down menu (see figure 3 above) allows the user to choose the way in which to
express the wanted size for the sample. If the value Count is selected, as on figure 3, the size of the sample will
be expressed directly in the number of segments (Sample size). If the Proportion value is selected, the size will be
expressed in percentage of input segments (Sampling rate (%)).

Method: Threshold

This method consists of retaining from the input segmentation only the segments whose content (or annotation value
for a given key) has a frequency in the segmentation that is comprised between given bounds.

The Annotation key drop-down menu (see figure 4 above) allows the user to select an annotation key from the input
segmentation; if so, the frequency of the annotation values associated with this key will condition the inclusion of
input segments. If the value (none) is selected, the frequency of the segment content will be decisive.

The Threshold expressed as drop-down menu allows the user to choose the way in which to express the minimal
and maximal frequency limits. If the value Count is selected, the limits will be expressed in absolute frequencies
(Min./Max. count). If the value Proportion is selected, as in figure 4, the limits will be expressed in percentages
(Min./Max. proportion (%)). For both values (minimum and maximum), thresholding is applied only if the corre-
sponding box is checked.

In the figure 4 example, the widget is configured to retain only the segments whose annotation value for the key
category (Annotation key) has a relative frequency (Threshold expressed as: Proportion) comprised between 5%
(Min. proportion (%)) and 10% (Max. proportion (%)) in the input segmentation.

The elements of the Options section of the widget interface are common to the three selection methods presented
above. The Auto-number with key checkbox enables the program to automatically number the segments of the
output segmentation and to associate the number to the annotation key specified in the text field on the right. The
Copy annotations checkbox copies every annotation of the input segmentation to the output segmentation.

126 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 93: Figure 4: Select widget (advanced interface, Threshold method).

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface or when its input data are modified (by deletion or addition of a connection, or because
modified data is received through an existing connection).

Below the Send button, some indications are given about the number of segments in the output segmentation, or the
reasons why no segmentation is emitted (no input data, no selected input segment, etc.).

Messages

Information

Data correctly sent to output: <n> segments. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings and Errors below).

Warnings

No regex defined. A regular expression must be entered in the Regex field in order for computation and data emission
to proceed.

1.6. Reference 127

Orange3-Textable Documentation, Release 3.1.11

No label was provided. A label must be entered in the Output segmentation label field in order for computation and
data emission to proceed.

No annotation key was provided for auto-numbering. The Auto-number with key checkbox has been selected and
an annotation key must be specified in the text field on the right in order for computation and data emission to
proceed.

Errors

Regex error: <error_message>. The regular expression entered in the Regex field is invalid.

Examples

• Getting started: Partitioning segmentations

• Getting started: Annotation-based selection

• Cookbook: Include/exclude segments based on a pattern

• Cookbook: Filter segments based on their frequency

• Cookbook: Create a random selection or sample of segments

Intersect

In-/exclude segments based on another segmentation.

Signals

Inputs:

• Segmentation (multiple)

Segmentation out of which a subset of segments should be selected (“source” segmentation), or containing the
segments that will be in-/excluded from the former (“filter” segmentation”).

Outputs:

• Selected data (default)

Segmentation containing the selected segments

• Discarded data

Segmentation containing the discarded segments

128 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Description

This widget inputs several segmentations and selects the segments of one of them (“source” segmentation) on the
basis of the segments present in another (“filter” segmentation). It also emits on an output connection (not selected by
default) a segmentation containing the segments that were not selected.

Basic interface

The Intersect section of the widget’s basic interface (see figure 1 above) allows the user to specify if the segments
of the source segmentation that correspond to a type present in the filter segmentation should be included (Mode:
Include) in the output segmentation or excluded (Mode: Exclude) from it. This section is also designed to select
the source segmentation (Source segmentation) and the filter segmentation (Filter segmentation) among the input
segmentations.1

Fig. 94: Figure 1: Intersect widget (basic interface).

The Source annotation key drop-down menu allows the user to select an annotation key from the source segmentation;
thus the segments whose annotation value for this key corresponds to a type present in the filter segmentation will be
in-/excluded. If the value (none) is selected, the segment content will be decisive.

1 It should be noted that the interface does not prevent the user from selecting the same segmentation as source and filter, which can only make
sense if different values are selected in the Source annotation key and Filter annotation key menus (the latter being only available when the
Advanced settings checkbox is selected).

1.6. Reference 129

Orange3-Textable Documentation, Release 3.1.11

Thus in figure 1 above, the widget inputs two segmentations. The first (Source segmentation), whose label is words,
is the result of the segmentation of a text in words, as performed with the Segment widget for instance. The second
(Filter segmentation), whose label is stopwords, is the result of the segmentation in words of a list of so-called
“stopwords” (articles, pronouns, prepositions, etc.)–typically deemed irrelevant for information retrieval.

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface or when its input data are modified (by deletion or addition of a connection, or because
modified data is received through an existing connection).

Below the Send button, the number of segments in the output segmentation are indicated, or the reasons why no
segmentation is emitted (no input data, no selected input segment, etc.).

Advanced interface

The main difference between the widget’s basic and advanced interface is that in the latter, section Intersect includes
a Filter annotation key drop-down menu and a Source annotation key.

If a given annotation key of the filter segmentation is selected in the drop-down menu of the Filter annotation key, the
corresponding annotation value (rather than content) types will condition the in-/exclusion of the source segmentation
segments. Since the Source annotation key drop-down menu is set on (none), the content of input segments will
determine the next steps (rather than the values of some annotation key). Concretely, the source segmentation segments
(namely the words from the text) whose content matches that of a segment from the filter segmentation (namely a
stopword) will be excluded (Mode: Exclude) from the output segmentation. By contrast, choosing the value Include
would result in including as output only the stopwords from the text.

The advanced interface also offers two additional controls in section Options. The Auto-number with key checkbox
enable the program to automatically number the segments from the output segmentation and to associate their number
to the annotation key specified in the text field on the right. The Copy annotations checkbox copies every annotation
from the input segmentation to the output segmentation.

Messages

Information

Data correctly sent to output: <n> segments. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings below).

Warnings

No label was provided. A label must be entered in the Output segmentation label field in order for computation and
data emission to proceed.

130 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

No annotation key was provided for auto-numbering. The Auto-number with key checkbox has been selected and
an annotation key must be specified in the text field on the right in order for computation and data emission to
proceed.

Examples

• Getting started: Using a segmentation to filter another

• Cookbook: Exclude segments based on a stoplist

Footnotes

Extract XML

Create a new segmentation based on XML markup.

Signals

Inputs:

• Segmentation

Segmentation covering XML data based on which a new segmentation will be created

Outputs:

• Extracted data

Segmentation containing the segments corresponding to extracted XML elements

Description

This widget inputs a segmentation, searches in its content portions corresponding to a specific XML element type,
and creates a segment for each occurrence of this element. It should be noted that if a given occurrence is distributed
among several segments of the input segmentation, it will result in the creation of as many segments in the output
segmentation.

Every attribute from extracted elements is automatically converted in annotation in the output segmentation. For
example, extracting the element <div> in the following fragment:

<div type="interjection">Cripes!</div>

will result in the creation of a segment whose content is Cripes! and whose annotation value for key type is interjection.

This widget offers the easiest and most flexible way to import into Orange Textable a segmentation and arbitrary
annotations specified by the user for a given text. Let us however mention the following limitation: the widget
automatically deletes all segments of zero length in the output segmentation. As a consequence, it is impossible to
import empty XML elements (be they in the form <element></element> or <element/>).

1.6. Reference 131

Orange3-Textable Documentation, Release 3.1.11

Basic interface

In the basic widget interface (see figure 1 below), the XML Extraction section allows the user to specify the XML
element to extract (XML element). The widget indeed only allows the extraction of a single type of element at a time;
however, it extracts every occurrence of this element, including those embedded in other occurrences of the same type.

Fig. 95: Figure 1: Extract XML widget (basic interface).

The Remove markup checkbox triggers the deletion of XML tags embedded within the extracted XML elements, if
any. An important consequence of the use of this option is that the extracted elements will potentially be decomposed
in several segments corresponding to portions of their content which are separated by the deleted XML tags (see
Advanced interface for an example of this mechanism1).

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface or when its input data are modified (by deletion or addition of a connection, or because
modified data is received through an existing connection).

Below, the Send button, the user finds indications such as the number of segments in the output segmentation, or the
reasons why no segmentation is emitted (no input data, no output segment created, etc.).

1 In comparison with the advance interface, it should also be noted that in the basic interface the options Prioritize shallow attributes and Fuse
duplicates are disabled by default.

132 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Advanced interface

The XML Extraction section of the widget interface (see figure 2 below) allows the user to configure the XML element
extraction. The field XML element allows the user to indicate the XML element type which should be sought. The
Import element with key checkbox enables the program to assign to each output segment an annotation whose key
is the text contained in the field immediately on the right and whose value is the name of the XML element extracted
by the widget.

If the Remove markup checkbox is selected, XML tags embedded within the extracted XML elements will be ex-
cluded from the output segmentation. An important consequence of the use of this option is that the extracted elements
will potentially be decomposed in several segments corresponding to portions of their content which are separated by
the excluded XML tags. For example, given the following fragment:

<text>a <keyword>fragment</keyword> of XML data</text>

the extraction of element <text> will lead to the creation of three segments:

a

fragment

of XML data

If on the other hand the Remove markup option is not selected, a single segment will be created:

a <keyword>fragment</keyword> of XML data

The Prioritize shallow attributes checkbox determines the behavior of the widget in the very particular case where
(a) elements of the extracted type are (exactly) embedded in one another, (b) they have different values for the same
attribute, (c) the Remove markup option is selected and (d) the Fuse duplicates option (section Options) as well.
This could be the case in the extraction of the <div> element in the following fragment for example:

<div type="A"><div type="B">two exactly embedded elements</div></div>

In such a case, the widget will first create two segments that have the exact same address (since the embedded XML
tags are deleted with Remove markup), then by the effect of Fuse duplicates, it will seek to fuse them into one. It
will only be able to keep one of the rival annotation values A and B for the annotation key type; by default, it will be
the value associated to the element closest to the root in the XML tree, namely A. If on the other hand the Prioritize
shallow attributes option is selected, the value of the element closest to the “surface” will be kept, in our example B.

The Conditions subsection included in the XML Extraction section allows the user to limit the extraction by speci-
fying conditions bearing on attributes of the extracted elements. These conditions are expressed in the form of regular
expressions that the given attribute values must match. In the list appearing at the top of this subsection, the columns
indicate (a) the concerned attribute, (b) the corresponding regular expression, and (c) the options associated to this
expression.2

In figure 2 above), we have thus limited the extraction only to the <div> elements that have a type attribute whose
value is poem. If several conditions were defined, they would all have to be fulfilled for an element to be extracted.
The buttons on the right enable the user to delete the selected condition (Remove) or to empty the list completely
(Clear All).

The remaining part of the Conditions subsection allows the user to add new conditions to the list. To do so, the
attribute in question (Attribute) and the corresponding regular expression (Regex) must be specified. The Ignore
case (i), Unicode dependent (u), Multiline (m) and Dot matches all (s) checkboxes manage the application of the

2 See Python documentation.

1.6. Reference 133

http://docs.python.org/library/re.html

Orange3-Textable Documentation, Release 3.1.11

Fig. 96: Figure 2: Extract XML widget (advanced interface).

134 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

corresponding options to the regular expression. Adding the new condition to the list is finally carried out by clicking
on the Add button.

Through the Options section the Auto-number with key checkbox enables the program to automatically number
the segments of the output segmentation and to associate the number to the annotation key specified in the text field
on the right. The Import annotations checkbox copies in each output segment every annotation associated to the
corresponding segment of the input segmentation. The Merge duplicate segments checkbox enables the program
to fuse distinct segments whose addresses are the same in a single segment; the annotations associated to the fused
segments are copied in the single resulting segment.3

The Send button triggers the emission of a segmentation to the output connection(s). When it is selected, the Send
automatically checkbox disables the button and the widget attempts to automatically emit a segmentation at every
modification of its interface or when its input data are modified (by deletion or addition of a connection, or because
modified data is received through an existing connection).

Below the Send button, the user finds some indications such as the number of segments in the output segmentation, or
the reasons why no segmentation is emitted (no input data, no output segment created, etc.).

Messages

Information

Data correctly sent to output: <n> segments. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings and Errors below).

Warnings

No XML element was specified. The name of an XML element must be entered in the XML element field in order
for computation and data emission to proceed.

No label was provided. A label must be entered in the Output segmentation label field in order for computation and
data emission to proceed.

No annotation key was provided for element import. In the advanced settings, the Import element with key check-
box has been selected and an annotation key must be specified in the text field on the right in order for compu-
tation and data emission to proceed.

No annotation key was provided for auto-numbering. The Auto-number with key checkbox has been selected and
an annotation key must be specified in the text field on the right in order for computation and data emission to
proceed.

3 In the case where the fused segments have distinct values for the same annotation key, only the value of the last segment (in the order of the
extracted segments before fusion) will be retained.

1.6. Reference 135

Orange3-Textable Documentation, Release 3.1.11

Errors

Regex error: <error_message> (condition #<n>). The regular expression in the n-th line of the Conditions list is
invalid.

XML parsing error (missing closing tag / orphan closing tag). The input XML data couldn’t be correctly parsed.
Please use an XML validator to check the data’s well-formedness.

Examples

• Getting started: Converting XML markup to annotations

• Cookbook: Convert XML tags to Orange Textable annotations

Footnotes

Display

Display or export the details of a segmentation.

Signals

Inputs:

• Segmentation

Segmentation to be displayed or exported.

Outputs:

• Bypassed segmentation (default)

Exact copy of the input segmentation

• Displayed segmentation

Segmentation covering the entire string displayed in the widget’s interface

Description

This widget inputs a segmentation and displays on screen the content and the annotation of the segments that compose
it. The widget allows the user notably to export the information in a text file. Moreover, it forwards the segmentation
without any modification on its output connections.1

Display plays an essential role in schema construction: it is the best way to check that the configuration of the
other segmentation processing widgets leads to the desired result in terms of segment and annotation creation or
modification.

1 The widget also sends, on a second channel not selected by default, a segmentation with a single segment containing the entire string as it is
displayed in the widget’s interface.

136 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

It should be noted that for long segmentations, the widget may appear stuck for a certain time after the progress bar
has run – a problem related to the graphic interface library on which Orange Canvas relies. Unless memory overflow
occurs, the problem normally solves itself after a few moments.

Basic interface

In its basic version, the widget formats the input segmentation in HTML and displays for each segment its number,
its complete address (string index, start and end positions) as well as its annotations (see figure 1). The Navigation
section enables the program to directly show a particular segment using Go to segment.

Fig. 97: Figure 1: Display widget (basic interface).

It can be noted that the basic interface of Display is more sober than those of the other widgets of Orange Textable: it
does not include a Send button nor a Send automatically checkbox. What motivates this design is the will to empha-
size the fundamental functionality of visualization of the input segmentation content and annotations – main reason
for the use of Display in most cases. In this context, by default, data are automatically sent on output connections.

Advanced interface

The widget’s advanced interface (see figure 2) restores informative indications such as the number of segments in the
input segmentation or the reasons why no segmentation is emitted (for example no input data) below the Text data
window. The Send button triggers the emission of a segmentation to the output connection(s). When it is selected,
the Send automatically checkbox disables the button and the widget attempts to automatically emit a segmentation
at every modification of its interface or when its input data are modified (by deletion or addition of a connection, or
because modified data is received through an existing connection).

1.6. Reference 137

Orange3-Textable Documentation, Release 3.1.11

Fig. 98: Figure 2: Display widget (advanced interface).

138 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

The Apply custom formatting button enables the program to produce a personalized rendering. In this mode, the
formatting of each segment is determined by a string entered in the Format field. This string can contain text that will
be reproduced as it is in the rendered output, as well as references to variables to insert in the output. These references
take the following general form:

%(variable_name)format

where variable_name designates the variable to insert and format the desired format for this variable. For a basic use,
all you need is to know that the format code s designates a character string and i an integer.2 If the name of the variable
is one of the following predefined strings, it will be interpreted as indicated in the right column:3

variable name meaning
__content__ segment content
__num__ segment number
__str_index__ string index
__str_index_raw__ string index counting from 0
__start__ initial position
__start_raw__ initial position counting from 0
__end__ final position

If on the contrary the name of the variable is not among those of the list, the program will interpret it as an annotation
key and will attempt to display the corresponding value (or the string __none__ if this key is not defined for the
considered segment).

The string entered in the Segment delimiter field, if any, will be inserted between each segment of the formatted
segmentation. Use the sequence n for a line break and t for tabulation.

The Header and Footer fields enable the user to specify strings that will be inserted respectively at the beginning and
the end of the formatted segmentation.

To take a simple example, consider the following (extract of a) segmentation of the string a simple example4:

content start end letter category
a 1 1 vowel
s 3 3 consonant
i 4 4 vowel
.
e 16 16 vowel

By entering:

• <word>\n in the header field,

• <letter pos="%(__num__)i" type="%(letter category)s">%(__content__)s</
letter> in the format field,

• \n in the segment delimiter field, and

• \n</word> in the footer field,

we obtain the following formatting:
2 For more details on the syntax of format codes, see Python documentation.
3 In general, predefined strings in Orange Textable have in common that they begin and end by two underscore characters (_); it is greatly

recommended to avoid this form for every name supplied by the user (in particular for the segmentation labels, as well as for the keys and annotation
values).

4 By convention, we do not indicate here the string index associated with each segment but only its start and end positions, along with the
annotation values associated with it; moreover, for the sake of readability, we do indicate the content of each segment, though it is not formally part
of the segmentation (but rather of the string to which the segmentation refers).

1.6. Reference 139

http://docs.python.org/library/stdtypes.html#string-formatting

Orange3-Textable Documentation, Release 3.1.11

<word>
<letter pos="1" type="vowel">a</letter>
<letter pos="2" type="consonant">s</letter>
<letter pos="3" type="vowel">i</letter>
<letter pos="4" type="consonant">m</letter>
<letter pos="5" type="consonant">p</letter>
<letter pos="6" type="consonant">l</letter>
<letter pos="7" type="vowel">e</letter>
<letter pos="8" type="vowel">e</letter>
<letter pos="9" type="consonant">x</letter>
<letter pos="10" type="vowel">a</letter>
<letter pos="11" type="consonant">m</letter>
<letter pos="12" type="consonant">p</letter>
<letter pos="13" type="consonant">l</letter>
<letter pos="14" type="vowel">e</letter>
</word>

The Export section of the widget interface also allows the user to export the displayed segmentation (standard HTML
or user-defined format) in a file. The encoding can be selected (Encoding) then click on Export to open a file selection
dialog. By clicking the Copy to clipboard button, the user may also to copy the displayed segmentation in order to
paste it in another application for instance; in this case, the utf-8 encoding is used by default.

When the option Apply custom formatting is not selected, the Navigation section is enabled and allows the user to
view a particular segment through the Go to segment control.

Messages

Information

Data correctly sent to output: <n> segments. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to ‘Displayed segmentation’ channel, see ‘Widget state’ below. A problem with the ‘Format’ parame-
ter prevents this widget instance from operating properly, and additional diagnostic information can be found in
the Widget state box at the bottom of the instance’s interface (see and Errors below).

Errors

Format mismatch error: a <variable_type> is required. In the advanced interface, the string entered in the Format
field indicates that a variable of a certain type (e.g. float) is expected, but in at least one case, the corresponding
value is of another type (e.g. string). The string type (e.g. %(__content__)s) is usually the safest bet.

Format mismatch error: not enough arguments for format string. In the advanced interface, the string entered in
the Format field indicates that a variable is expected but in at least one case, there is no corresponding value.
Make sure that no placeholder is used without an explicit name (always use e.g. %(__content__)s, and
never %s).

Format error: missing variable type. In the advanced interface, a variable type indication is missing in the string
entered in the Format field. Make sure that no placeholder is used without a variable type indication (always

140 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

use e.g. %(__content__)s, and never %(__content__)).

Format error: missing name. In the advanced interface, a variable name is missing in the string entered in the Format
field. Make sure that no placeholder is used without a variable name (always use e.g. %(__content__)s,
and never %()s).

Examples

• Getting started: Keyboard input and segmentation display

• Cookbook: Display text content

• Cookbook: Export text content (and/or change text encoding)

Footnotes

1.6.3 Table construction widgets

Widgets of this category take Segmentation data in input and emit tabular data in the internal format of Orange Textable.
They are thus ultimately responsible for converting text to tables, either by counting items (Count), by measuring their
length (Length), by quantifying their diversity (Variety). Widget Cooccurrence makes it possible to measure the
tendency of text units to occur in the same contexts, while Context serves to build concordances and collocation lists.
Finally, Category exploits categorical information associated with segmentations.

Count

Count segment types.

Signals

Inputs:

• Segmentation (multiple)

Segmentation whose segments constitute the units to be counted or the contexts in which the units will be
counted

Outputs:

• Pivot Crosstab

Table displaying the absolute frequency of units

Description

This widget inputs one or several segmentations, counts the frequency of segments defined by one of the segmentations
(potentially within segments defined by another), and sends the result in the form of a contingency table (or co-
occurrence matrix or also term–document matrix).

1.6. Reference 141

Orange3-Textable Documentation, Release 3.1.11

The contingency tables produced by this widget are of PivotCrosstab type, a subtype of the generic Table format (see
Convert widget, section Table formats). In such a table, each column corresponds to a unit type, each line corresponds
to a context type, and the cell at the intersection of a given column and line contains the count (or absolute frequency,
or also number of occurrences) of this unit type in this context type.

To take a simple example, consider two segmentations of the string a simple example1:

A) label = words

content start end part of speech word category
a 1 1 article grammatical
simple 3 8 adjective lexical
example 10 16 noun lexical

B) label = letters (extract)

content start end letter category
a 1 1 vowel
s 3 3 consonant
i 4 4 vowel
.
e 16 16 vowel

Typically, we could define unit types based on the content of the segments of the letters segmentations, and context
types based on the content of the segments of the words segmentations. Counting these unit types in these contexts
types would thus produce the following contingency table2:

__context__ a s i m p l e x
a 1 0 0 0 0 0 0 0
simple 0 1 1 1 1 1 1 0
example 1 0 0 1 1 1 2 1

Alternatively, we could rather count the annotation values (instead of the content) of the units and/or of the contexts.
For example, by defining units on the basis of the annotations associated to the key letter category in the letters seg-
mentation, and contexts on the basis of the annotations associated to the key word category in the words segmentation,
we would obtain the following table:

__context__ vowel consonant
grammatical 1 0
lexical 5 8

This way of selecting segmentations and annotation keys constitutes an extremely flexible mechanism which enables
the user to easily produce a variety of contingency tables. Note that it is up to the user to provide a coherent defini-
tion of the units and contexts. In general, a given unit is considered to occur in a given context if, (a) the segment
corresponding to the unit and the context are both be associated to the same string, (b) the initial position of the unit
segment in the string is higher or equal to that of the context segment, and (c) conversely the final position of the unit
is lower or equal to that of the context. In short, the unit must be contained within the context.

1 By convention, we do not indicate here the string index associated with each segment but only its start and end positions, along with the various
annotation values associated with it; moreover, for the sake of readability, we do indicate the content of each segment, though it is not formally part
of the segmentation (but rather of the string to which the segmentation refers).

2 The first column header, __context__, is a name predefined by Orange Textable.

142 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

A borderline case made possible by this modus operandi consists of defining units and contexts on the basis of the same
segmentation. Indeed since every segment is contained in itself, nothing keeps us from using a single segmentation,
words for example, and defining units with the key part of speech and contexts with the key word category:

__context__ article noun verb
grammatical 1 0 0
lexical 1 1 0

Orange Textable offers two other ways to define contexts while still using a single segmentation. The first relies on the
notion of a “window” of n segments that we progressively “slide” from the beginning to the end of the segmentation.
In our example, by applying this principle to the letters segmentation and by setting the window size to 11 segments,
we thus define the following contexts:

1. a simple exam

2. simple examp

3. imple exampl

4. mple example

By otherwise defining the units based on the letter category annotations for example, we thus obtain the following
counts (where the contexts are represented by their successive positions):

__context__ vowel consonant
1 5 6
2 4 7
3 4 7
4 4 7

The last context specification mode that Count offers and which involves a single segmentation consists of defining
the contexts as n segments immediately to the left and/or to the right of each segment. For example, based on the letter
category annotations of segmentation letters, defining the contexts as the two segments immediately on the left and
on the right of the segment results in the following contingency table (where the ‘+’ symbol separates the successive
segments of the context and the underscore symbol ‘_’ separates the left and right parts of the context):

__context__ consonant vowel
vowel+consonant_consonant 2 2
consonant+vowel_consonant 2 1
consonant+consonant_vowel 2 1
vowel+vowel_vowel 1 0

Such a table notably indicates that in a context composed, on the left, of a vowel+consonant sequence and, on the right,
of a consonant (for example ex_m or am_l), we have twice observed a vowel and thrice a consonant. A particular case
of this type of table is that of the transition matrix that defines a Markov chain, where we only consider the context on
the left of the segments:

__context__ vowel consonant
vowel o 5
consonant 5 4

Let us also note that context specification, unlike unit specification, is optional. Indeed, it is always possible to globally
count the frequency of segmentation units and thus produce a table that only contains a single row corresponding to
the whole concerned segmentation (thus letters, in the following example):

1.6. Reference 143

Orange3-Textable Documentation, Release 3.1.11

__context__ a s i m p l e x
__global__ 2 1 1 2 2 2 3 1

Finally, in every scenario considered here, we could also take an interest for the frequency of the sequences from 2, 3,
. . . , n segments (or n–grams) rather that to the frequency of isolated segments:

__context__ as si im mp pl le ex xa am
__global__ 1 1 1 2 2 2 1 1 1

After having thus outlined the range of contingency table types that the Count widget can produce, we can take a look
at its interface (see figures 1 to 4). It contains two separate sections for unit definition (Units) and context definition
(Contexts).

In the Units section, the Segmentation drop-down menu allows the user to select among the input segmentations the
one whose segment types will be counted. The Annotation key menu displays the annotation keys associated to the
chosen segmentation, if any; if one of the keys is selected, the corresponding annotation values will be counted; if
on the other hand the value (none) is selected, the content of the segments will be counted. The Sequence length
drop-down menu allows the user to indicate if isolated segments or segment n–grams should be counted; in this latter
case, the (optional) string specified in the Intra sequence delimiter text field will be used to separate the content or
the annotation value corresponding to each segment in the column headers.3

The Contexts section is available in several variants, depending on the selected value in the Mode drop-down menu.
The latter allows the user to choose between the different ways of defining contexts described earlier. The No context
mode (see figure 1) corresponds to the case where units are counted globally in the whole segmentation specified in
the Units section (to which we will refer by the term unit segmentation).

The Sliding window mode (see figure 2) implements the notion of a “sliding window” introduced earlier. Typically
it allows the user to observe the evolution of frequency throughout the unit segmentation. The only parameter is the
window size (in number of segments), defined by the Window size cursor.

The Left–right neighborhood mode (see figure 3) allows the user to specify context types based on the n segments
immediately to the left and/or right of each segment; this mode notably allows the user to build a Markov chain
transition matrix. The Left context size and Right context size parameters determine the number of segments taken
into consideration in each part of the context. The Unit position marker text field allows the user to specify the
(possibly empty) character chain to insert in-between the left and right parts of the context in the row headers. The
checkbox (Treat distinct strings as contiguous) enables the user to to choose if separate strings should be treated as
if they were actually contiguous, so that the end of each string is adjacent to the beginning of the next string.

Finally, the Containing segmentation mode (see figure 4) corresponds to the case where contexts are defined by the
segment types that appear in a segmentation (which can be that of the units or another). This segmentation, that we
will call context segmentation by analogy, is selected among the input segmentations by means of the Segmentation
drop-down menu. The Annotation key menu displays the annotation keys associated with the context segmentation, if
any; if one of the keys is selected, the corresponding annotation value types will constitute the row headers; if however
the value (none) is selected, the content of the segments will be exploited. The Merge contexts checkbox enables the
program to globally count the units in the whole context segmentation.

Below the Send button, the user finds indications such as the sum of frequencies in the output table, or the reasons
why not table is emitted (no input data or total frequency is zero).

The Compute button triggers the emission of a table in the internal format of Orange Textable, to the output con-
nection(s). When it is selected, the Compute automatically checkbox disables the button and the widget attempts
to automatically emit a segmentation at every modification of its interface or when its input data are modified (by
deletion or addition of a connection, or because modified data is received through an existing connection).

3 The same character string will be inserted between the successive segments that build up the left and/or right context if the Left–right
neighborhood mode is selected.

144 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 99: Figure 1: Count widget (No context mode).

1.6. Reference 145

Orange3-Textable Documentation, Release 3.1.11

Fig. 100: Figure 2: Count widget (Sliding window mode).

Fig. 101: Figure 3: Count widget (Left–right neighborhood mode).

Fig. 102: Figure 4: Count widget (Containing segmentation mode).

146 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Messages

Information

Data correctly sent to output: total count is <n>. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Compute’ when ready. Settings and/or input have changed but
the Compute automatically checkbox has not been selected, so the user is prompted to click the Compute
button (or equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings below).

Warnings

Resulting table is empty. No table has been emitted because the widget instance couldn’t find a single element in its
input segmentation(s). A likely cause for this problem (when using the Containing segmentation mode) is that
the unit and context segmentations do not refer to the same strings, so that the units are in effect not contained
in the contexts. This is typically a consequence of the improper use of widgets Preprocess and/or Recode (see
Caveat).

Examples

• Getting started: Counting segment types

• Getting started: Counting in specific contexts

• Cookbook: Count unit frequency

• Cookbook: Count occurrences of smaller units in larger segments

• Cookbook: Count transition frequency between adjacent units

• Cookbook: Examine the evolution of unit frequency along the text

See also

• Reference: Convert widget (section “Table formats”)

Footnotes

Length

Compute the (average) length of segments.

1.6. Reference 147

Orange3-Textable Documentation, Release 3.1.11

Signals

Inputs:

• Segmentation (multiple)

Segmentation whose segments constitute the units of length measurement, the contexts whose lengths will be
measured, or the units over which length will be averaged

Outputs:

• Textable table

Table in the internal format of Orange Textable

Description

This widget inputs one or several segmentation, measures the length of one (eventually within the segments defined
by another segmentation), and sends the results in table format. It also allows the user to calculate the average length
of segments of a segmentation based on the units defined by another segmentation.

The tables produced by the Length widget have at least 2 columns, and at most 4. The first column contains the
headers corresponding to the contexts – which are essentially defined in the same way as in the Count widget. The
second column gives the length indications (in which case the header is __length__) or the average length (header
__length_average__). In the latter case, the third column may then contain the corresponding standard deviations if
their display is required by the user (header __length_std_deviation__), and the last column will indicate the number
of elements on which the average calculation is done (header __length_count__).

To take a simple example, consider two segmentations of the string a simple example1:

A) label = words

content start end part of speech word category
a 1 1 article grammatical
simple 3 8 adjective lexical
example 10 16 noun lexical

B) label = letters (extract)

content start end letter category
a 1 1 vowel
s 3 3 consonant
i 4 4 vowel
.
e 16 16 vowel

Essentially here two basic configurations are considered. The first is when we are simply interested in the length of a
given segmentation, for example letters:

__context__ __length__
__global__ 14

1 By convention, we do not indicate here the string index associated with each segment but only its start and end positions, along with the various
annotation values associated with it; moreover, for the sake of readability, we do indicate the content of each segment, though it is not formally part
of the segmentation (but rather of the string to which the segmentation refers).

148 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

In what follows, we will designate with the terms units of measurement the segments whose count is interpreted as a
length measure, namely in this example the segments of the segmentation letters.

The second basic configuration is when we wish to know the average length of the segments of a segmentation, for
example words, in terms of measure units belonging to another segmentation (here letters):

__context__ __length_average__ __length_std_deviation__ __length_count__
__global__ 4.66666650772 2.62466931343 3

In this case, we will name averaging units the segments whose lengths are measured and averaged. Note that the
average length calculation presupposes that at least one measure unit is contained within the averaging unit, in the
sense that the following three conditions are met: (a) the segment corresponding to the unit and the context are both
be associated to the same string, (b) the initial position of the unit segment in the string is higher or equal to that of the
context segment, and (c) conversely the final position of the unit is lower or equal to that of the context.

These two elementary configurations (length measurement and average length calculation) can then be combined with
two ways of specifying contexts – i.e. two ways of defining table rows. The first mode consists of defining the contexts
based on the content or the annotations of a given segmentation; for example, here is the length of the words segments
(contexts) in terms of those of letters (units of measurement):

__context__ __length__
a 1
simple 6
example 7

It should be noted that the segment types define the row headers, as illustrated in the following example, where the
same segmentations are used but the contexts are defined by the annotation values associated with the key word type:

__context__ __length__
grammatical 1
lexical 13

The average length calculation is also applicable when the contexts are defined on the basis of a segmentation. In this
case, we will generally use three different segmentations to define the units of measurement, the averaging units, and
the contexts; for example, it could be to calculate the average length of words (in number of letters) in different texts.
To stay in the frame of our example based on only two segmentations, we can exploit the fact that all segments are
contained in themselves and calculate the average length of words (in number of letters) depending on the word types
annotations (in other words we here use a single segmentation to determine the contexts and the averaging units):

__context__ __length_average__ __length_std_deviation__ __length_count__
grammatical 1 0 1
lexical 6.5 0.5 2

The second context specification mode lies on the concept of a “window” of n segments that we progressively slide
from the beginning to the end of the segmentation. For example, by setting the window size to 2 segments, we can
examine the average length of words (in number of letters) in successive bigrams of the words segmentation (identified
by their position):

__context__ __length_average__ __length_std_deviation__ __length_count__
1 3.5 2.5 2
2 6.5 0.5 2

1.6. Reference 149

Orange3-Textable Documentation, Release 3.1.11

By construction, each cell of the column __length_count__ will then contain the same value, or the window size.
Based on this observation, it is rather easy to convince oneself that this latter context specification mode only makes
sense when we are interested in the evolution of an average length throughout a segmentation.

We now move on to the presentation of the widget interface (see figure 1). It contains three separate sections for the
specification of the units of measurement (Units), of the averaging units (Averaging), and of the contexts (Contexts).

The Units section only contains a single drop-down menu (Segmentation) used to select among the input segmentation
the one whose segments will provide the units of measurement.

In the Averaging section, the Average over segmentation checkbox triggers the calculation of the average length. The
drop-down menu on the right allows the user to select the segmentation whose segments will constitute the averaging
units. The Compute standard deviation checkbox allows the user to calculate, other than the average length, its
standard deviation. It should be noted that for large segmentations, this option is likely to spectacularly extend the
calculation time.

Fig. 103: Figure 1: Length widget (No context mode).

The Contexts section is available in several variants depending on the value selected in the Mode drop-down menu.

150 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

This latter option allows the user to choose among the context specification modes described above. The No context
mode corresponds to the case where the length measurement or the average length calculation are globally applied to
the entire segmentation that defines the units of measurement (specified in the Units section).

The Sliding window mode (figure 2) implements the notion of a “sliding window” introduced above. It allows the
user to observe the evolution of the average length throughout the averaging unit segmentation. The only parameter is
the size of the window (in number of segments), set by means of the Window size cursor.

Fig. 104: Figure 2: Length widget (Sliding window mode).

Fig. 105: Figure 3: Length widget (Containing segmentation mode).

Finally, the Containing segmentation mode (see figure 3) corresponds to the case where the contexts are defined by
the segment types appearing in a segmentation (that will most often be distinct from the segmentation providing the
units of measurement and the averaging units). This segmentation is selected among the input segmentation by means
of the Segmentation drop-down menu. The Annotation key menu shows the possible annotation keys associated to
the selected segmentation; if one of these keys is selected, the corresponding types of annotation values will constitute
the row headers; if on the other hand the value (none) is selected, the content of the segments will be used. The
Merge contexts checkbox allows the user to measure the length or to calculate the average length globally in the
entire segmentation that defined the contexts.

The Send button triggers the emission of a table in the internal format of Orange Textable to the output connection(s).
When it is selected, the Send automatically checkbox disables the button and the widget attempts to automatically
emit a segmentation at every modification of its interface or when its input data are modified (by deletion or addition
of a connection, or because modified data is received through an existing connection).

The informations below the Send button indicate if a table has been correctly emitted, or the reasons why no table is
emitted (no input data).

1.6. Reference 151

Orange3-Textable Documentation, Release 3.1.11

Messages

Information

Data correctly sent to output. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings below).

Warnings

Resulting table is empty. No table has been emitted because the widget instance couldn’t find a single element in its
input segmentation(s). A likely cause for this problem (when using the Containing segmentation mode) is that
the unit and context segmentations do not refer to the same strings, so that the units are in effect not contained
in the contexts. This is typically a consequence of the improper use of widgets Preprocess and/or Recode (see
Caveat).

Footnotes

Variety

Measure the variety of segments.

Signals

Inputs:

• Segmentation

Segmentation whose segments constitute the units of variety measurement, or the contexts in which variety will
be measured

Outputs:

• Textable table

Table in the internal format of Orange Textable

152 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Description

This widget inputs one or several segmentations, measures the variety of the segments of one of the segmentations
(eventually within the segments defined by another segmentation), and sends the result in table format; it also allows
the user to calculate the average variety by category (based on the annotation values of the segments). In order to make
these two measures less dependent on the length of segmentations, it is possible to calculate their average value on a
number of subsamples of fixed size.

The tables produced by the Variety widget have at least 2 columns, and at most 4. The first column contains the
headers corresponding to the contexts – which are essentially defined in the same way as in the Count and Length
widgets. The second column gives the variety measures and its header is __variety__, unless resampling has been
applied (in which case the header will be __variety_average__). In the latter case, the third column will contain the
corresponding standard deviation (header __variety_std_deviation__) and the last column the number of subsamples
(header __variety_count__).

To take a simple example, consider two segmentations of the string a simple example1:

A) label = words

content start end part of speech word category
a 1 1 article grammatical
simple 3 8 adjective lexical
example 10 16 noun lexical

B) label = letters (extract)

content start end letter category
a 1 1 vowel
s 3 3 consonant
i 4 4 vowel
.
e 16 16 vowel

The most elementary measure made by the widget is that of the number of types or variety. For example, for the
segmentation letters, by defining the units based on the content of the segments:

__context__ __variety__
__global__ 8

Naturally, it is possible to define types based on the values associated to an annotation key, for example letter category:

__context__ __variety__
__global__ 2

It is also possible to weigh the variety according to the frequency of types. To do this, we can calculate the perplexity
of the segment distribution, that is to say the exponential of the entropy on this distribution. This measure is equal
to the variety only if the segment types have a uniform frequency; it decreases and tends towards 0 as the segment
distribution departs from uniformity and gradually becomes deterministic. As an example, here is the perplexity for
letter category:

1 By convention, we do not indicate here the string index associated with each segment but only its start and end positions, along with the various
annotation values associated with it; moreover, for the sake of readability, we do indicate the content of each segment, though it is not formally part
of the segmentation (but rather of the string to which the segmentation refers).

1.6. Reference 153

Orange3-Textable Documentation, Release 3.1.11

__context__ __variety__
__global__ 1.97962633005

The difference observed between the variety with or without weighing (1.96 vs 2) shows the deviation from uniformity
in the distribution of letter categories in this example.

Rather than looking at the variety (weighed or not) of the segment types in general, we can look at their average variety
within a category. For example, we can ask what is the average variety of letters depending on the letter category:

__context__ __variety__
__global__ 4.0

On average, in our example, a type of letter (consonant or vowel) is thus represented by 4.0 distinct letters – as long
as we give the same weight to each category. The alternative consists of weighing the categories according to their
frequency, which would result in our case in giving more weight to the variety of consonants (whose frequency is 9)
than to that of the vowels (whose frequency is 6) in our average calculation:

__context__ __variety__
__global__ 4.14285714286

From the increase observed compared to the case where the categories are not weighed, we can deduce that the number
of distinct consonants is higher than that of the vowels.

To sum up, weighing (or not) the frequencies of units is the basis of the distinction between variety and perplexity;
moreover, in the case where we calculate the average variety/perplexity per category, it is possible to weigh (or not)
by the frequency of categories.

The different variety measures presented above can then be combined with the same context (i.e. table rows) spec-
ification modes as in the Length widget: the first mode consists in defining the contexts based on the content or the
annotations of a given segmentation; the second lies on the concept of a “window” of n segments that we progressively
“slide” from the beginning to the end of the segmentation.

All variety measures (weighed or not, simple or by category) are sensitive to the sample size, which in our case means
the segmentation length. As such, they are in principle not directly comparable among/between of different lengths.
Consider for example the (unweighted) variety of letters (units) in words (contexts):

__context__ __variety__
a 1
simple 6
example 6

To reduce the effect of this dependence to the segmentation length, it is possible to adopt the following strategy: draw a
set number of subsamples in each segmentation to compare and report the average variety by subsample. For example,
by setting the size of the subsamples to 2 segments, and by drawing 100 subsamples for each word, we obtain the
following results:2

__context__ __variety_average__ __variety_std_deviation__ __variety_count__
a — — —
simple 1.59 0.491833305094 100
example 1.52 0.499599839872 100

2 The example has an instructive purpose; in practice we will typically use a clearly higher subsample size, for example 50 segments or more.

154 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Here, we can see that the variety average in simple is very slightly higher than in example because simple is a shorter
word and has no repeating letters. Moreover, since the article a is only one letter, our operation cannot build subsamples
of 2 letters to compute and report their average variety, hence the missing values for variety average, standard deviation
and count.

We now move on to the presentation of the widget interface (see figure 1). It has four separate sections, for unit spec-
ification (Units), category specification (Categories), context specification (Contexts), and resampling parameters
(Resampling).

In the Units section, the Segmentation drop-down menu allows the user to select among the input segmentations
the one whose segments will be the basis of the variety calculation. The Annotation key menu shows the possible
annotation keys associated to the chosen segmentation; if one of these keys is selected, the corresponding annotation
values will be used; if on the other hand the value (none) is selected, the content of the segments will be used. The
Sequence length drop-down menu allows the user to indicate if the widget should consider the isolated segments or
the n–grams. Finally, the Weigh by frequency checkbox allows the user to enable the weighing of the units by their
frequency (thus the perplexity measure rather than the variety). Checking the Dynamically adjust subsample size
box permits a more robust variety estimation. This calculation uses the RMSP subsample size adjustment method
described in Xanthos and Guex 2015.

In the Categories section, the Measure diversity per category checkbox triggers the calculation of the average
diversity by category. The Annotation key drop-down menu allows the user to select the annotation key whose values
will be used for the category definitions. The Weigh by frequency checkbox allows the user to enable the weighing
by the category frequency.

The Contexts section is available in several variants depending on the value selected in the Mode drop-down menu.
The latter allows the user to choose among the context specification modes described above. The No context mode
corresponds to the case where the variety measure is applied globally to the entire unit segmentation.

The Sliding window mode (see figure 2) implements the notion of a “sliding window” introduced earlier. It allows
the user to observe the evolution of variety throughout the segmentation. The only parameter is the window size (in
number of segments), set by means of the Window size cursor.

Finally, the Containing segmentation mode (see figure 3) corresponds to the case where the contexts are defined by
the segment types appearing in a given segmentation. This segmentation is selected among the input segmentations
by means of the Segmentation drop-down menu. The Annotation key menu shows the possible annotation keys
associated to the selected segmentation; if one of these keys is selected, the corresponding annotation values will
constitute the row headers; if on the other hand the value (none) is selected, the content of the segments will be used.
The Merge contexts checkbox allows the user to measure the variety globally in the entire segmentation that defines
the contexts.

In the Resampling section, the Apply resampling checkbox allows the user to enable the calculation of the average
diversity in subsamples of fixed size. The number of segments by subsample is determined by the Subsample size
cursor, and the number of subsamples with Number of subsamples.

The Send button triggers the emission of a table in the internal format of Orange Textable, to the output connection(s).
When it is selected, the Send automatically checkbox disables the button and the widget attempts to automatically
emit a segmentation at every modification of its interface or when its input data are modified (by deletion or addition
of a connection, or because modified data is received through an existing connection).

The informations given under the Send button indicate if a table has been correctly emitted, or the reasons why no
table is emitted (no input data, typically).

Messages

Information

Data correctly sent to output. This confirms that the widget has operated properly.

1.6. Reference 155

Orange3-Textable Documentation, Release 3.1.11

Fig. 106: Figure 1: Variety widget.

156 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 107: Figure 2: Variety widget (Sliding window mode).

Fig. 108: Figure 3: Variety widget (Containing segmentation mode).

1.6. Reference 157

Orange3-Textable Documentation, Release 3.1.11

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings below).

Warnings

Resulting table is empty. No table has been emitted because the widget instance couldn’t find a single element in its
input segmentation(s). A likely cause for this problem (when using the Containing segmentation mode) is that
the unit and context segmentations do not refer to the same strings, so that the units are in effect not contained
in the contexts. This is typically a consequence of the improper use of widgets Preprocess and/or Recode (see
Caveat).

Footnotes

Cooccurrence

Measure the cooccurrence of segments in documents.

Signals

Inputs:

• Segmentation (multiple)

Segmentation whose segments constitute the units subject to measurement of their cooccurrence or the contexts
in which unit cooccurrence will be measured

Outputs:

• Pivot Crosstab

Table displaying the cooccurrence of units in the defined context

Description

This widget inputs one or several segmentations, measures the number of documents in which the input segments
occur simultaneously, and sends the result in the form of a cooccurrence matrix1.

1 The definition of cooccurrence may vary depending on the discipline in which this notion is used. In text analytics, the cooccurrence is the
number of the documents in which two textual units simultaneously occur. Here by convention, cooccurrence is the dot product of the transposed
term-document matrix with itself, which is symmetric when considering only one unit type. As a result, and contrary to other definitions, the
diagonal members of the matrix are not zero; rather, they indicate the document frequency of the corresponding textual unit (i.e. the number of

158 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

The cooccurrence matrix produced by this widget is of IntPivotCrosstab type, a subtype of the generic Table format
(see Convert widget, section Table formats). Since this table is a cooccurrence matrix, both rows and columns cor-
respond to unit types. The cell at the intersection of a given column and row represents the number of documents
(context types) in which these two unit types occur simultaneously. As the measure of cooccurrence represents abso-
lute frequency, the resulting table contains integer numbers, and as such it is of IntPivotCrosstab type, a subclass of
PivotCrosstab.

To take a simple example, consider two segmentations of the string a simple example2:

A) label = words

content start end part of speech word category
a 1 1 article grammatical
simple 3 8 adjective lexical
example 10 16 noun lexical

B) label = letters (extract)

content start end letter category
a 1 1 vowel
s 3 3 consonant
i 4 4 vowel
.
e 16 16 vowel

Typically, we could define unit types based on the content of the segments of the letters segmentation.

As for the context types, there are two distinct forms of contexts for measuring the cooccurrence of the units: * Sliding
window* Containing segmentation

Sliding window relies on the notion of a “window” of n segments that we progressively “slide” from the beginning to
the end of the segmentation. In our example, by applying this principle to the letters segmentation and by setting the
window size to 3 segments, we thus define the following contexts:

1. a si

2. sim

3. imp

4. mpl

5. ple

6. le e

7. e ex

8. exa

9. xam

10. amp

11. mpl

12. ple

context types in which it occurs).
2 By convention, we do not indicate here the string index associated with each segment but only its start and end positions, along with the various

annotation values associated with it; moreover, for the sake of readability, we do indicate the content of each segment, though it is not formally part
of the segmentation (but rather of the string to which the segmentation refers).

1.6. Reference 159

Orange3-Textable Documentation, Release 3.1.11

Considering the letter segmentation as that of the unit types, we would obtain the following cooccurrence matrix3:

__unit__ a s i m p l e x
a 4 1 1 2 1 0 1 2
s 1 2 2 1 0 0 0 0
i 1 2 3 2 1 0 0 0
m 2 1 2 6 4 2 0 1
p 1 0 1 4 6 4 2 0
l 0 0 0 2 4 5 3 0
e 1 0 0 0 2 3 5 2
x 2 0 0 1 0 0 2 3

Alternatively, we could consider the annotation values of the units instead of their content. For example, by defining
units based on the annotations associated to the key letter category in the letters segmentation, and choosing the mode
Sliding window for the context with the window size of 3 (see figure 1), we would obtain the following cooccurrence
matrix:

__unit__ vowel consonant
vowel 10 10
consonant 10 12

The mode Containing segmentation consists in measuring the cooccurrence of units in context defined by another
segmentation. In the above example we consider letter as the segmentation for unit types and word as the segmentation
for context types, and thus the following cooccurrence matrix will be obtained and is symmetric by definition:

__unit__ a s i m p l e x
a 2 0 0 1 1 1 1 1
s 0 1 1 1 1 1 1 1
i 0 1 1 1 1 1 1 1
m 1 1 1 2 2 2 2 1
p 1 1 1 2 2 2 2 1
l 1 1 1 2 2 2 2 1
e 1 1 1 2 2 2 2 1
x 1 0 0 1 1 1 1 1

Each cell at the above table represents the number of words (segments of the context types) in which the unit in the
column and the unit in the row are used simultaneously. For example, “2” in the fifth column and forth row, shows
that there are two words in which p and m occur together.

In the Containing segmentation mode, it is also possible to measure the cooccurrence of units belonging to distinct
segmentations. For instance this would enable us to know how many times a given vowel and a given consonant occur
simultaneously in each word. By ticking the Secondary units checkbox in the interface of the widget, we will be
able to define a segmentation for secondary unit types. In this case, the resulting cooccurrence matrix will no longer
be symmetric. Therefore, in the above example, vowels as the primary units segmentation constitute the rows, and
consonants as the secondary units segmentation constitute the columns of the resulting cooccurrence matrix (see figure
2):

__unit__ s m p l x
a 0 1 1 1 1
i 1 1 1 1 0
e 1 2 2 2 1

3 The first column header, __unit__, is a name predefined by Orange Textable.

160 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

As mentioned in the Sliding window mode, it is always possible to measure the cooccurrence of the annotation values
of the units (primary and secondary) and those of the contexts instead of the content of segments. In the case of the
above example with the secondary units, the resulting crosstab consists of only one cell indicating the number of words
in which every letter with vowel and every letter with consonant annotation value have occurred at the same time:

__unit__ consonant
vowel 2

Note that it is up to the user to provide a coherent definition of the units and contexts. In general, there are three
conditions to be met in this respect: (a) the segment corresponding to the unit and the context are both associated
to the same string, (b) the initial position of the unit segment in the string is higher or equal to that of the context
segment, and (c) conversely the final position of the unit is lower or equal to that of the context. In short, the unit must
be contained within the context.

It is also noteworthy that in order to measure the cooccurrence, it is by definition necessary to specify a context. The
context is set to the Sliding window mode by default.

Finally, in every scenario considered here, we could also take an interest for the cooccurrence of sequences of 2, 3,
. . . , n segments (or n–grams) rather than for the frequency of isolated segments. The cooccurrence matrix of bigrams
in Sliding window (size 3) is illustrated below:

__unit__ as si im mp pl le ee ex xa am
as 1 1 0 0 0 0 0 0 0 0
si 1 2 1 0 0 0 0 0 0 0
im 0 1 2 1 0 0 0 0 0 0
mp 0 0 1 4 2 0 0 0 0 0
pl 0 0 0 2 4 2 0 0 0 0
le 0 0 0 0 2 3 1 0 0 0
ee 0 0 0 0 0 1 2 1 0 0
ex 0 0 0 0 0 0 1 2 1 0
xa 0 0 0 0 0 0 0 1 2 1
am 0 0 0 1 0 0 0 0 1 2

Hereafter the interface of the widget will be introduced (see figures 1 to 4). It contains three separate sections for unit
definition (Units and Secondary units) and context definition (Contexts).

In the Units section, the Segmentation drop-down menu allows the user to select among the input segmentations,
the one whose segment types will be subject to the cooccurrence measurement. The Annotation key menu displays
the annotation keys associated to the chosen segmentation, if any; if one of the keys is selected, the corresponding
annotation values will be considered; if on the other hand the value (none) is selected, the content of the segments will
be taken into consideration. The Sequence length drop-down menu allows the user to indicate if isolated segments
or segment n–grams should be considered; in the latter case, the (optional) string specified in the Intra sequence
delimiter text field will be used to separate the content or the annotation value corresponding to each segment in the
table headers.

The Secondary units section has almost the same characteristics as the Units section, except for the fact that there is
no Sequence length menu. This section is by default disabled due to the default mode of the Contexts section being
Sliding window, in which only one unit segmentation can be considered for the measure of cooccurrence (see figure
1). When changing the mode to Containing segmentation, the box becomes automatically enabled (see figure 2).

The Contexts section is available in two forms, depending on the selected value in the Mode drop-down menu. This
allows the user to choose between the two possible ways of defining contexts described earlier. The Sliding window
mode (see figure 3) implements the notion of a “sliding window” introduced earlier. Typically, it allows the user to
observe the cooccurrence of the unit types with one another throughout the unit segmentation. The only parameter is
the window size (in number of segments), defined by the Window size cursor, set to 2 by default.

1.6. Reference 161

Orange3-Textable Documentation, Release 3.1.11

Fig. 109: Figure 1: Cooccurrence widget (Sliding window mode as the default mode).

Fig. 110: Figure 2: Secondary units box of Cooccurrence widget.

162 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 111: Figure 3: Cooccurrence widget (Sliding window mode).

Fig. 112: Figure 4: Cooccurrence widget (Containing segmentation mode).

1.6. Reference 163

Orange3-Textable Documentation, Release 3.1.11

Finally, the Containing segmentation mode (see figure 4) corresponds to the case where contexts are defined by the
segment types that appear in another segmentation. This segmentation is selected among the input segmentations by
means of the Segmentation drop-down menu. The Annotation key menu displays the annotation keys associated
with the context segmentation, if any; if one of the keys is selected, the corresponding annotation value types will
constitute the row headers; otherwise the value (none) is selected so that content of the segments will be exploited.

The Send button triggers the emission of a table in the internal format of Orange Textable, to the output connection(s).
When it is selected, the Send automatically checkbox disables the button and the widget attempts to automatically
emit a segmentation at every modification of its interface or when its input data are modified (by deletion or addition
of a connection, or because modified data is received through an existing connection).

The informations given below the Send button indicate whether or not the data is correctly sent to the output table. If
not, the respective error message will be given.

Messages

Information

Data correctly sent to output. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings below).

Warnings

Resulting table is empty. No table has been emitted because the widget instance couldn’t find a single element in its
input segmentation(s). A likely cause for this problem (when using the Containing segmentation mode) is that
the unit and context segmentations do not refer to the same strings, so that the units are in effect not contained
in the contexts. This is typically a consequence of the improper use of widgets Preprocess and/or Recode (see
Caveat).

See also

• Reference: Convert widget (section “Table formats”)

Footnotes

Context

164 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Explore the context of segments.

Signals

Inputs:

• Segmentation (multiple)

Segmentation containing the “key segments” whose context will be examined or the segments which serve to
define these contexts.

Outputs:

• Textable table

Table displaying the concordance of key segments or their collocations.

Description

This widget inputs one or several segmentations and outputs concordances or collocation lists in table format, allowing
the user to examine the contexts in which selected segments appear.

The functioning of this widget lies on the notions of units and contexts, as all table contruction widgets. The role of
the unit segmentation is central; it defines the key segments whose contexts can be examined by means of the resulting
concordances or lists of collocations.

To take a simple example, consider two segmentations of the string a simple example1:

A) label = words

content start end part of speech word category
a 1 1 article grammatical
simple 3 8 adjective lexical
example 10 16 noun lexical

B) label = letters (extract)

content start end letter category
a 1 1 vowel
s 3 3 consonant
i 4 4 vowel
.
e 16 16 vowel

The simplest case is when a single segmentation is considered; the only way to define contexts is thus in terms of a
given number of neighboring segments. For example, given the single letters segmentation, we can build the following
concordance:

1 By convention, we do not indicate here the string index associated with each segment but only its start and end positions, along with the various
annotation values associated with it; moreover, for the sake of readability, we do indicate the content of each segment, though it is not formally part
of the segmentation (but rather of the string to which the segmentation refers).

1.6. Reference 165

Orange3-Textable Documentation, Release 3.1.11

__id__ __pos__ 1L __key_segment__ 1R
1 1 — a s
2 2 a s i
3 3 s i m
4 4 i m p
5 5 m p l
6 6 p l e
7 7 l e e
8 8 e e x
9 9 e x a
10 10 x a m
11 11 a m p
12 12 m p l
13 13 p l e
14 14 l e —

In this table, the column __id__ gives the index of each key segment (its position in the table). The column __pos__
indicates the position of each key segment in the unit segmentation, and in this case this information duplicates the
previous one (we will see below that it is not always the case). The key segment itself appears in the __key_segment__
column, and its direct neighbors on the left and the right appear respectively in the columns 1L and 1R.

The number of neighbors shown on the left and right can of course be higher, just as we can show the annotation
values instead of the segment contents (be it key segments or their neighbors). For example, the following table gives
2 direct neighbors of each letter by showing their annotation value for the key letter category:

__id__ __pos__2L 1L __key_segment__ 1R 2R
1 1 — — a consonant vowel
2 2 — vowel s vowel consonant
3 3 vowel consonant i consonant consonant
4 4 consonant vowel m consonant consonant
5 5 vowel consonant p consonant vowel
6 6 consonant consonant l vowel vowel
7 7 consonant consonant e vowel consonant
8 8 consonant vowel e consonant vowel
9 9 vowel vowel x vowel consonant
10 10 vowel consonant a consonant consonant
11 11 consonant vowel m consonant consonant
12 12 vowel consonant p consonant vowel
13 13 consonant consonant l vowel —
14 14 consonant consonant e — —

The particularity of such tables is that they give the context of every segment of the single considered segmentation.
In general, we are rather interested in certain specific segments, which we can indicate by means of a distinct segmen-
tation. Supposing that we have, in addition to the letters segmentation, a segmentation whose label is key_segments
and that contains only the occurrences of letter e (always in the string a simple example):2

content start end letter category
e 8 8 vowel
e 10 10 vowel
e 16 16 vowel

2 It is typically by means of the Select widget that we could produce such a segmentation.

166 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

By specifying the key segments with this segmentation and the contexts (here the neighboring segments) with the
letters segmentation, we can then produce the following table:

__id__ __pos__2L 1L __key_segment__ 1R 2R
1 7 consonant consonant e vowel consonant
2 8 consonant vowel e consonant vowel
3 14 consonant consonant e — —

This example of a more typical concordance proves, for that matter, that the position of the key segment in the table
(column __id__) is not necessarily equal to its position in the segmentation that defined the contexts (column __pos__).

In the previous examples, the context of each key segment is defined in the terms of the neighboring segments in
a segmentation. Another possibility is to define the context on the basis of another segmentation whose segments
contain the key segments. To illustrate this second mode of context characterization, consider the case where units are
specified by the key_segments segmentation, as previously, and the contexts by the words segmentation:

__id__ __pos__ __left__ __key_segment__ __right__
1 2 simpl e —
2 3 — e xample
3 3 exampl e —

This example shows the implications of this change of context specification mode. Firstly, the resulting table now has
a fixed width3 of 5 columns: __id__ and __key_segment__ have the same function as before; __pos__ indicates the
position of the context segment that contains each key segment (which allows the user to find and view the context in
question with the Display widget); finally the columns __left__ and __right__ respectively give the left and right part
of each context segment containing a key segment.

Moreover in this case, replacing the segment content with one of its annotation values would not make much sense.
However, it can be useful to indicate such a value in a separate column, as part of speech in the following example
which also illustrates the possibility of replacing the content of the key segment with an annotation value (here letter
category):

__id__ __pos__ __left__ __key_segment__ __right__ part of speech
1 2 simpl vowel — adjective
2 3 — vowel xample noun
3 3 exampl vowel — noun

These examples highlight the versatility of the Context widget, whose possibilities are more diverse than those a basic
concordancer typically offers – at the cost of a more complex application since it generally involves being able to build
and put in relation two or more distinct segmentations of the analyzed text.

We conclude this overview of the capacities of the widget with the building of collocation lists. First note that this
functionality is here conceived as a visualization option applicable to a concordance where the context is defined in
terms of the neighboring (rather than containing) segments. Instead of representing the neighboring segments of each
key segment occurrence, we can in fact build a list of these (types of) segments with an indication of the attraction or
on the contrary repulsion between each of them and the key segment.

Consider again the example of the concordance presented earlier where the units are given by the key_segments seg-
mentation and the context by the letter category annotations values of the letters segmentation:

3 Except in the “pathological” case where no key segment is contained in the context segment.

1.6. Reference 167

Orange3-Textable Documentation, Release 3.1.11

__id__ __pos__2L 1L __key_segment__ 1R 2R
1 7 consonant consonant e vowel consonant
2 8 consonant vowel e consonant vowel
3 14 consonant consonant e — —

The same data enable the program to produce the following collocation list:

__unit__ __mutual_info__ __local_freq__ __local_prob__ __global_freq__ __global_prob__
consonant 0.292781749228 7 0.7 8 0.571428571429
vowel -

0.51457317283
3 0.3 6 0.428571428571

The column __mutual_info__ gives the mutual information (in bits) between the key segment (here the letter e) and
each value of the letter category annotation that appeared close by (here at a maximum distance of 3 segments) the key
segments. This quantity is the binary logarithm of the ratio of the probability of the letter category value in question
close to the key segment and its probability in the context segmentation in general.

Thus the consonant type appears 7 times in the surroundings of e (__local_freq__), on a total of 10 segments that
appeared close, hence the “local” probability of 7/10 = 0.7 (__local_prob__); moreover the same type appeared 8
times in the whole letters segmentation (__global_freq__), on a total of 14 segments, hence the “global” probability
of 8/14 = 0.57 (__global_prob__). Finally the binary logarithm of 0.7/0.57 = 1.22 is 0.3 bits (__mutual_info__), and
this (slightly) positive value reflects the (weak) attraction between e and the consonant type at a maximum distance
of 3 segments. Conversely, the negative mutual information between e and vowel shows that these categories are in a
rather repulsive relation in the considered surrounding.

The widget interface (see figure 1) is divided in two separate sections of unit specification (Units) and context spec-
ification (Contexts). In the Units section, the Segmentation drop-down menu allows the user to select among the
input segmentations the one whose segments will play the role of key segments. The Annotation key menu shows
the potential annotation keys associated to the chosen segmentation; if one of the keys is selected the corresponding
annotation values will be used; if on the other hand the value (none) is selected, it will be the content of the segments.
The Separate annotation button, activated only when an annotation key is selected, enables the user to indicate that
the values associated to this key must appear in a separate column (whose header is the corresponding key) rather
than replace the segment contents in the column __key_segment__. Note that the two buttons (Annotation key and
Separate annotation) are disabled when the button Use collocation format is selected.

In the Context section, the Mode menu allows the user to choose between the two context characterization modes
mentioned earlier: in terms of neighboring segments of the key segment (Neighboring segments) or of segments
containing them (Containing segmentation). In both cases, the segmentation in question is selected among the
input segmentation through the Segmentation drop-down menu and the Annotation key menu shows the potential
annotation keys associated to this segmentation. If one of these keys is selected, the display of the corresponding
values varies depending on the Mode used: in Neighboring segments mode, the annotation values replace the content
of the segments in the columns 1R*, 1L, . . . ; in Containing segmentation mode, they appear in a separate column
whose header is the corresponding annotation key.

In Neighboring segments mode, the Contexts section also allows the user to indicate if a limit should be set to
the number of neighboring segments shown for each key segment and where it is set (Max. distance). The Use
collocation format button is used to format the result as a collocation list (rather than a concordance); when it is
selected, the Min. frequency drop-down menu allows the user to specify the (global) minimal frequency that the
segment type must reach in order to appear in the list. Checking the Treat distinct strings as contiguous box permits
to treat separate strings as if they were contiguous, so that the end of each string is a djacent to the beginning of the
next string.

In Containing segmentation mode (see figure 2), the Contexts section allows the user to specify the maximal number
of characters that appear in the right and left context of the pivot.

168 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 113: Figure 1: Interface of the Context widget.

1.6. Reference 169

Orange3-Textable Documentation, Release 3.1.11

Fig. 114: Figure 2: Context widget (Containing segmentation mode).

The Send button triggers the emission of a table in the internal format of Orange Textable, to the output connection(s).
When it is selected, the Send automatically checkbox disables the button and the widget attempts to automatically
emit a segmentation at every modification of its interface or when its input data are modified (by deletion or addition
of a connection, or because modified data is received through an existing connection).

The informations generated below the Send button indicate if a table was correctly emitted, or the reasons why no
table is emitted (typically, because it is empty).

Messages

Information

Data correctly sent to output. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings below).

Warnings

Resulting table is empty. No table has been emitted because the widget instance couldn’t find a single element in its
input segmentation(s). A likely cause for this problem (when using the Containing segmentation mode) is that
the unit and context segmentations do not refer to the same strings, so that the units are in effect not contained
in the contexts. This is typically a consequence of the improper use of widgets Preprocess and/or Recode (see
Caveat).

170 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

See also

• Cookbook: Build a concordance

Footnotes

Category

Build a table with categories defined by segments’ content or annotations.

Signals

Inputs:

• Segmentation (multiple)

Segmentation whose segments constitute the basis for category extraction.

Outputs:

• Textable table

Table displaying the extracted categories

Description

This widget inputs one or several segmentations and outputs a tabulated representation of categories associated to the
segments of one of them; categories are typically defined on the basis of their annotation values of segments for a
given annotation key, but may also be defined on the basis of the content of segments.

Typically, tables produced by the Category widget are destined to be merged (by means of the built-in Merge Data
widget of Orange Canvas) with quantitative tables produced by widgets Count, Length, or Variety, in order to associate
with each row the piece of categorical information required to train a text classifier (i.e. a system able to automatically
predict the membership of a text to a category based on the quantitative profile associated with it). Here is an example
of a table with this structure, where the second column would have been constructed by an instance of Category, and
the columns to its right by an instance of Count:

__context__ __category__ noun verb . . .
text1 news 35 12 . . .
text2 news 20 8 . . .
text3 poetry 27 18 . . .
.

The tables produced by this widget only contain two columns. The first (header __context__) contains the headers
corresponding to the contexts – which are essentially defined in the same way as with the Containing segmentation
mode of widgets Count, Length, and Variety: by the segment types appearing in a segmentation. The second column
(header __category__) contains the annotation(s) associated with each segment type.

1.6. Reference 171

Orange3-Textable Documentation, Release 3.1.11

To take a simple example, consider two segmentations of the string a simple example1:

A) label = words

content start end part of speech word category
a 1 1 article grammatical
simple 3 8 adjective lexical
example 10 16 noun lexical

B) label = letters (extract)

content start end letter category
a 1 1 vowel
s 3 3 consonant
i 4 4 vowel
.
e 16 16 vowel

Based on the latter segmentation, we can produce the following table, giving the annotation value associated with the
key letter category for each distinct letter:

__context__ __category__
a vowel
s consonant
i vowel
m consonant
p consonant
l consonant
e vowel
x consonant

In this illustration, each letter is only associated to a single category. In a more general case, the contexts can be
associated to several categories; for example, if the contexts are defined based on the word category annotation of the
words segmentation and the extracted categories are defined as the segment contents of the letters segmentation:

__context__ __category__
grammatical a
lexical e-m-l-p-a-i-s-x

In this case, the user will have to choose (a) the order (frequential or ASCII-betical) in which the multiple values will
be sorted and (b) whether they should all be shown or only the first (in the selected order).

The widget interface (see figure 1) has three separate sections, for unit specification (Units), for multiple values
processing specification (Multiple Values), and for context specification (Contexts).

In the Units section, the Segmentation drop-down menu allows the user to select among the input segmentations the
one whose segments will be examined to determine the categories. The Annotation key menu shows the possible
annotation keys associated to the chosen segmentation; if one of these keys is selected, the corresponding annotation
values will be used; if on the other hand the value (none) is selected, the content of the segments will be used. The
Sequence length drop-down menu allows the user to indicate if the widget should consider the isolated segments or

1 By convention, we do not indicate here the string index associated with each segment but only its start and end positions, along with the various
annotation values associated with it; moreover, for the sake of readability, we do indicate the content of each segment, though it is not formally part
of the segmentation (but rather of the string to which the segmentation refers).

172 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

the n–grams of segments. In this latter case, the (optional) string specified in the Intra-sequence delimiter text field
will be used to separate the content or the annotation value corresponding to each individual segment.

In the Multiple Values section, the Sort by drop-down menu allows the user to select the sorting criteria of multiple
values, namely either the frequency (Frequency) or the ASCII order (ASCII). The Sort in reverse order checkbox
reverses the sorting order, and the Keep only first value checkbox allows the program to retain only the first value
(in the selected order). The Value delimiter field is used to indicate the character string to insert in-between multiple
values.

Unlike other table contruction widgets , here the context specification can only be done in relation to a segmentation
containing the unit segmentation (thus the equivalent of the Containing segmentation mode of widgets Count, Length,
and Variety:). This segmentation is selected among the input segmentation by means of the Segmentation drop-down
menu. The Annotation key menu shows the possible annotation keys associated to the selected segmentation; if one
of these keys is selected, the corresponding annotation values will will constitute the row headers; if on the other hand
the value (none) is selected, the content of the segments will be used.

The Send button triggers the emission of a table in the internal format of Orange Textable, to the output connection(s).
When it is selected, the Send automatically checkbox disables the button and the widget attempts to automatically
emit a segmentation at every modification of its interface or when its input data are modified (by deletion or addition
of a connection, or because modified data is received through an existing connection).

The informations generated below the Send button indicate if a table has been correctly emitted, or the reasons why
no table is emitted (no input data, typically).

Messages

Information

Data correctly sent to output. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings below).

Warnings

Resulting table is empty. No table has been emitted because the widget instance couldn’t find a single element in its
input segmentation(s). A likely cause for this problem (when using the Containing segmentation mode) is that
the unit and context segmentations do not refer to the same strings, so that the units are in effect not contained
in the contexts. This is typically a consequence of the improper use of widgets Preprocess and/or Recode (see
Caveat).

1.6. Reference 173

Orange3-Textable Documentation, Release 3.1.11

Fig. 115: Figure 1: Interface of the Category widget.

174 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Footnotes

1.6.4 Conversion/export widgets

The widgets of this category serve diverse purposes unified by the notion of “conversion”. Convert takes as input
tabular data in Orange Textable format and converts them to other formats, in particular the Table format appropriate
for further processing within Orange Canvas; Convert also makes it possible to apply various standard transforms to a
table, such as sorting, normalizing, etc., as well as to export its contents in tab-delimited text format. Message takes as
input a segmentation containing data in a specific JSON format (see Reference: JSON im-/export format) and converts
them to a “message” that can be used to control the behavior of other widgets.

Convert

Convert, transform, or export Orange Textable tables

Signals

Inputs:

• Textable Table

Table in the internal format of Orange Textable.

Outputs:

• Orange Table (default)

Data in the standard Table format of Orange Canvas (possibly transformed).

• Textable Table

Table in the internal format of Orange Textable (possibly transformed).

• Segmentation

Segmentation containing the output table in tab-delimited format.

Description

Convert, inputs data in the internal format of Orange Textable and enables the user to modify them (sorting, nor-
malization, etc.), to convert them to other formats, in particular the standard Table format of Orange Canvas (suitable
for further processing within Orange Canvas), or to export them in tab-delimited text format (either to a file or to the
clipboard).

Table formats

The table representation format of Orange Canvas (Table type) presents compatibility issues with Unicode encoded
data. Since this encoding is emerging as the most widely used standard for languages of the world, Orange Textable
provides its own Unicode-friendly table representation format.

1.6. Reference 175

Orange3-Textable Documentation, Release 3.1.11

Widgets Count, Length, Variety, Category, and Context) thus produce tables in Orange Textable format. In order to
be manipulated by the numerous tabulated data processing widgets offered by Orange Canvas, these data must be
converted to the standard Table format of Orange Canvas (and to an encoding supported by this latter format).

Note that the internal Orange Textable Table type subdivides in several subtypes. In particular, the contingency ta-
bles (see Count widget) belong to the Crosstab subtype which itself subdivides in PivotCrosstab, FlatCrosstab, and
WeightedFlatCrosstab. These three subtypes are equivalent with regard to the information they allow the user to store,
and the easiest way to understand what differentiates them is to see an example.

Consider the following contingency table, of IntPivotCrosstab1 type (such as produced by the Count widget):

__context__ unit1 unit2
context1 1 3
context2 2 1

Here is the same information converted in FlatCrosstab format:

__id__ __unit__ __context__
1 unit1 context1
2 unit2 context1
3 unit2 context1
4 unit2 context1
5 unit1 context2
6 unit1 context2
7 unit2 context2

This representation contains three columns carrying the headers __id__, __unit__ and __context__, and a number of
rows equal to the total count of the contingency table. It is the standard way of encoding a contingency table in Orange
Canvas, and it is required by widgets such as Correspondence Analysis (after conversion to the Table type defined by
Orange Canvas).

The WeightedFlatCrosstab format produces a more compact representation by keeping only one copy of each distinct
unit–context pair and by adding a column __count__ to save information on the number of repetition of each pair:

__id__ __unit__ __context__ __weight__
1 unit1 context1 1
2 unit2 context1 3
3 unit1 context2 2
4 unit2 context2 1

This format is sometimes used to represent contingency tables in third-party data analysis software. It is often called
“sparse” matrix format. format.

Output channels

Regardless of the selected output table format (or the transforms that have been applied to the data, see Advanced
interface below), the Convert widget emits data on three distinct output channels:

• The default output channel (Orange Table) emits data converted to standard Table format of Orange Canvas; it
will typically be used for passing them to built-in Orange Canvas table processing widgets.

1 IntPivotCrosstab is in turn a subtype of PivotCrosstab (and similarly IntWeightedFlatCrosstab is a subtype of WeightedFlatCrosstab), whose
specificity is to be limited to integer values.

176 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

• The Textable Table channel outputs a table in the internal format of Orange Textable (usually after applying
some set of transforms); it can then be sent to another instance of Convert (in cases where it is useful to
apply transforms in distinct steps) or to an instance of the built-in Python script widget of Orange Canvas, for
accessing the content of the table in a programmatic fashion.

• The Segmentation channel emits a segmentation with a single segment enclosing a version of the (possibly trans-
formed) table in tab-delimited text format (in utf-8 encoding), which is suitable for further textual processing
using Orange Textable widgets such as Recode or Segment for instance.

Basic interface

The basic version of the widget (see figure 1 below) is essentially limited to the Encoding section, which allows
the user to select an encoding for the output data. This can be done for the data possibly exported to a text file in
tab-delimited format (Output File). If certain characters cannot be converted to the specified encoding (for example
accentuated characters in the ASCII encoding), they are automatically replaced by corresponding HTML entities (for
example é for é).

Fig. 116: Figure 1: Convert widget (basic interface).

The Export section allows the user to export a version of the (possibly transformed) table in tab-delimited text format,
either to a text file (Export to file) or to the clipboard (Copy to clipboard), in order to paste it to a spreadsheet opened
in a third-party program for instance. In the former case, the Output file drop-down menu (section Encoding) is used
to indicate which encoding the data should be converted to before being saved; typically, except for a limit imposed
by the further processing planned for the saved data (for example by a specific data analysis program), we will seek
to keep here the maximum amount of information by specifying either the original encoding of the data, or a more
general encoding (a variant of Unicode for example). Note that when the data are copied to the clipboard, the utf-8
encoding is used by default (regardless of what has been selected in the Encoding section).

1.6. Reference 177

Orange3-Textable Documentation, Release 3.1.11

Advanced interface

The advanced version of the Convert widget (see figure 2 below) contains an additional section (Transform) allowing
the user to apply a number of standard modifications to the incoming table. The different operations defined in this
section are applied to input data in the order in which they appear in the interface, top to bottom. The modified data
can then be emitted on output connections or exported (either to a file or to the clipboard).

The Sort rows by column checkbox triggers row sorting. If it is selected, the column headers of the table appear in
the drop-down menu directly on the right and the user can thus select the column on the basis of which the rows will
be sorted. If the Reverse box on the right of the drop-down menu is checked, rows will be sorted by decreasing value.

Sort columns by row controls in a similar way column sorting. It should be noted in this case that the first column
(containing row headers) will always stay in the same position; the sorting only affects the following columns. To sort
the columns based on the header row, you must select the first option in the Sort columns by row drop-down menu
in the right. It will typically contain a name predefined by Orange Textable but which does not appear in the table
(__unit__ if it is a contingency table of PivotCrosstab type such as produced by the Count widget, and the generic
header __col__ in every other case).

The Transpose checkbox allows the user to transpose the table, which means invert its rows and columns. This option
is only available for PivotCrosstab type contingency tables.

The Normalize checkbox triggers the normalization of the table (in a rather loose sense of the term); it is only
applicable for PivotCrosstab type contingency tables. If it is selected, the user can choose in the drop-down menu
directly on the right whether the normalization should be applied by rows (rows) or by columns (columns); the Norm
drop-down menu allows the user to select the type of normalization, either L1 (division by the sum of the row/column)
or L2 (division by the root of the sum of the squares of the row/column).

Three more operations (which are not usually classified as normalizations in the strict sense of the term) can be selected
in the drop-down menu, each of which deactivates the Norm drop-down menu on the right:

• In quotients mode, the count stored in each cell of a contingency table (of PivotCrosstab type) is divided by the
corresponding “theoretical” count under the hypothesis of independence between table rows and columns. This
quotient is superior to 1 if the row and the column in question are in a mutual attraction relation, inferior to 1 in
case of repulsion between the row and the column, finally equal to 1 if the row and column do not repulse nor
attract each other particularly.

• In TF–IDF mode, the count stored in each cell of a contingency table (of PivotCrosstab type) is multiplied by
the natural log of the ratio of the number of rows (i.e. contexts) having nonzero frequency for this column (i.e.
unit) to the total number of rows.

• In presence/absence mode, counts greater than 1 are replaced by the value 1, so that the resulting table can
contain only 0’s and 1’s.

The common property of all operations available in the Normalize drop-down menu is that they preserve the origi-
nal dimensions of the input contingency table. On the contrary, the Convert to checkbox (only applicable for Piv-
otCrosstab type tables) allows the user to trigger the application of transforms which actually modify the dimension-
ality of the table :

• In document frequency mode, a new contingency table is created, which giver, for each column (i.e. unit) the
number of distinct rows (i.e. contexts) that have nonzero frequency (hence the resulting table contains a single
row).

• In association matrix mode, a new symmetric table is constructed, where each cell gives a measure of the
(Markov) associativity between a pair of columns (i.e. units) in the original contigency table: two columns are
thus strongly associated if they have similar profiles of attraction/repulsion with rows (i.e. contexts). Select-
ing this mode activates the Bias drop-down menu on the right, which allows the user to select between three
predefined ways of weighing the contributions of high versus low frequencies in this computation: frequent em-
phasizes strong associations between frequent units; none provides a balanced compromise between frequent

178 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Fig. 117: Figure 2: Convert widget (advanced interface).

1.6. Reference 179

Orange3-Textable Documentation, Release 3.1.11

and rare units; rare emphasizes strong associations between rare units (note that in this particular case, values
greater than 1 express an attraction and values lesser than 1 a repulsion)2.

It is worth mentioning that the Normalize and Convert to checkboxes are mutually exclusive and deactivate one
another.

Finally, the Reformat to sparse crosstab checkbox allows the user to convert a contingency table from the Piv-
otCrosstab format to the WeightedFlatCrosstab or from IntPivotCrosstab to IntWeightedFlatCrosstab (see the Table
formats section above). In turn, data in IntWeightedFlatCrosstab format can be converted to FlatCrosstab by fur-
ther selecting option Encode counts by repeating rows; the latter option is only available when dealing with tables
containing integer values.

Compared to its basic version (see Basic interface above), the advanced version of the Export section offers two extra
controls. The Column delimiter drop-down menu allows the user to select the column separator that will be inserted
between cell values when exporting a table in text format; possible choices are tabulation (t), comma (,), and semi-
colon (;). The Output Orange headers checkbox allows the user to indicate if the output should include every header
line of the format .tab specific to Orange Canvas (Output Orange headers)–which is useful only for re-importing
the exported table using the built-in File widget of Orange Canvas (and in fact often necessary in that case). Both
parameters (Column delimiter and Output Orange headers also apply to the data sent on the Segmentation output
channel)

The Send button triggers data emission to the output connection(s) (see Output channels above). When it is selected,
the Send automatically checkbox disables the button and the widget attempts to automatically send data at every
modification of its interface or when its input data are modified (by deletion or addition of a connection, or because
modified data is received through an existing connection).

The informations generated below the Send button indicate the number of lines and columns in the output table, or the
reasons why no table is emitted (no input data).

Messages

Information

Data correctly sent to output: table has <n> and <m> columns. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input table. The widget instance is not able to emit data to output because it receives
none on its input channel(s).

See also

• Cookbook: Display table

• Cookbook: Export table

2 For more details on the calculation of Markov associativities, see Bavaud F. and Xanthos A. (2005). Markov associativities. Journal of
Quantitative Linguistics, 12:123–137. Details on the effect of the bias parameter can be found in Deneulin, P., Gautier, L., Le Fur, Y., and Bavaud,
F. (2014). Corrélats textuels autour du concept de minéralité dans les vins. In Actes des 12èmes Journées internationales d’analyse statistique des
données textuelles (JADT 2014), pp. 209–223; the predefined values of this parameter (frequent, none, and rare) correspond respectively to values
1, 0.5 and 0 of parameter alpha in the above cited reference.

180 Chapter 1. Contents

Orange3-Textable Documentation, Release 3.1.11

Footnotes

Message

Parse JSON data in segmentation and use them to control other widgets.

Signals

Inputs:

• Segmentation

Segmentation containing a single segment with the JSON data to be parsed

Outputs:

• Message

JSONMessage object that can be sent to other widgets

Description

This widget inputs a segmentation containing a single segment whose content is in JSON format. After validation, the
data are converted to a JSONMessage object and emitted to the widget’s output connections. Provided that the data
conform to one of the formats described in section JSON im-/export format, the JSONMessage object can be sent to
an instance of the corresponding widget (either Text Files, URLs, Recode, or Segment) and used to control its behavior
remotely.

Fig. 118: Figure 1: Interface of the Message widget.

The widget’s interface offers no user-controlled option (see figure 1 above).

The Send button triggers the emission of a JSONMessage object to the output connection(s). When it is selected, the
Send automatically checkbox disables the button and the widget attempts to automatically emit a segmentation when

1.6. Reference 181

http://www.json.org/

Orange3-Textable Documentation, Release 3.1.11

its input data are modified (by deletion or addition of a connection, or because modified data is received through an
existing connection).

The informations generated below the Send button indicate the number of items present in the parsed JSON data, or
the reasons why no JSONObject can be emitted (no input or invalid data, input segmentation containing more than one
segment).

Messages

Information

Data correctly sent to output: <n> items. This confirms that the widget has operated properly.

Settings were (or Input has) changed, please click ‘Send’ when ready. Settings and/or input have changed but the
Send automatically checkbox has not been selected, so the user is prompted to click the Send button (or
equivalently check the box) in order for computation and data emission to proceed.

No data sent to output yet: no input segmentation. The widget instance is not able to emit data to output because it
receives none on its input channel(s).

No data sent to output yet, see ‘Widget state’ below. A problem with the instance’s parameters and/or input data pre-
vents it from operating properly, and additional diagnostic information can be found in the Widget state box at
the bottom of the instance’s interface (see Warnings and Errors below).

Warnings

Input segmentation contains more than 1 segment. The input segmentation must contain exactly 1 segment.

Errors

JSON parsing error. The input JSON data couldn’t be correctly parsed. Please use a JSON validator to check the
data’s well-formedness.

See also

• Reference: Text Files widget, Remote control

• Reference: URLs widget, Remote control

• Reference: Segment widget, Remote control

• Reference: Recode widget, Remote control

• Reference: JSON im-/export format

1.6.5 JSON im-/export format

Beyond a restricted number of sources, substitutions, or regular expressions, it becomes tedious to configure instances
of widgets Text Files, URLs, Recode, and Segment using their advanced interface. To alleviate this issue, these widgets
enable the user to import or export manually edited configuration lists in JSON format as described in the following
sections.

182 Chapter 1. Contents

http://www.json.org/

Orange3-Textable Documentation, Release 3.1.11

Generalities

The general format of JSON configuration files is the following:

[
{

"key_1": value_1,
"key_2": value_2,
...
"key_N": value_N

},
...
{

"key_1": value_1,
"key_2": value_2,
...
"key_N": value_N

}
]

NB:

• the file must be encoded in utf-8

• the whole file is included between square brackets [...]

• each entry of the list is included between braces { ... } and separated from the next by a coma

• each entry contains a list of key–value pairs separated by comas, in an arbitrary order

• key and value are separated by a colon :

• the key is always a string between double quotation marks "..."

• the value may be a string between double quotation marks, or one of the Boolean keywords true and false

• inside each string, the backslash \ and the double quotation marks " must be preceded (“escaped”) by a back-
slash; line break and tabulation are obtained with n and t respectively; the notation uDDDD (where each D
represents a digit) is accepted for Unicode characters.

• Certain keys have a default value and are thus optional; the others are compulsory.

File list (Text Files widget)

The keys (and associated values) for the file lists are the following:

Key Type Default Value Remark
path string — file path (absolute or

relative)
be careful to escaping the backslash

encoding string — file encoding cf. Python doc (codecs)
annotation_key string — annotation key —
annotation_value string annotation value —

Example:

[
{

"path": "data\\Balzac\\Eugenie_Grandet.txt",
(continues on next page)

1.6. Reference 183

http://docs.python.org/2/library/codecs.html#standard-encodings

Orange3-Textable Documentation, Release 3.1.11

(continued from previous page)

"encoding": "iso-8859-1",
"annotation_key": "auteur",
"annotation_value": "Balzac"

},
{

"path": "data\\Balzac\\Le_Pere_Goriot.txt",
"encoding": "iso-8859-1",
"annotation_key": "auteur",
"annotation_value": "Balzac"

},
{

"path": "data\\Daudet\\Lettres_de_mon_moulin.txt",
"encoding": "iso-8859-15",
"annotation_key": "auteur",
"annotation_value": "Daudet"

},
{

"path": "data\\Daudet\\Tartarin_de_Tarascon.txt",
"encoding": "iso-8859-15",
"annotation_key": "auteur",
"annotation_value": "Daudet"

}
]

URL list (URLs widget)

The keys (and associated values) for the URLs lists are the following:

Key Type Default Value Remark
url string — file url (absolute) be careful to include the indication

http://
encoding string — file encoding cf. Python doc (codecs)
annotation_key string — annotation key —
annotation_value string annotation value —

Example:

[
{

"url": "http://www.imsdb.com/scripts/Alien.html",
"encoding": "iso-8859-1",
"annotation_key": "genre",
"annotation_value": "sci-fi"

},
{

"url": "http://www.imsdb.com/scripts/Pulp-Fiction.html",
"encoding": "iso-8859-1",
"annotation_key": "genre",
"annotation_value": "crime"

}
]

184 Chapter 1. Contents

http://docs.python.org/2/library/codecs.html#standard-encodings

Orange3-Textable Documentation, Release 3.1.11

Substitution list (Recode widget)

The keys (and associated values) for the file lists are the following:

Key Type Default Value Remark
regex string — regular expression be careful to escape the slashes

and backslash
replacement_string string replacement string —
ignore_case Boolean false option -i cf. Python doc (re.UNICODE)
multiline Boolean false option -m cf. Python doc

(re.MULTILINE)
dot_all Boolean false option -s cf. Python doc (re.DOTALL)
unicode_dependent Boolean false option -u cf. Python doc

(re.IGNORECASE)

Example:

[
{

"regex": "<.+?>",
"replacement_string": ""

},
{

"regex": "(behavi|col|neighb)our",
"replacement_string": "&1or",
"ignore_case": true,
"unicode_dependent": true

},
{

"regex": "a (\\w+) of mine",
"replacement_string": "my &1",
"unicode_dependent": true

}
]

Regular expression list (Segment widget)

The keys (and associated values) for the file lists are the following:

Key Type Default Value Remark
mode string — “split” or “tokenize” —
regex string — regular expression be careful to escape the backslash
ignore_case Boolean false option -i cf. Python doc (re.UNICODE)
multiline Boolean false option -m cf. Python doc (re.MULTILINE)
dot_all Boolean false option -s cf. Python doc (re.DOTALL)
unicode_dependent Boolean false option -u cf. Python doc (re.IGNORECASE)
annotation_key string — annotation key —
annotation_value string annotation value —

Example:

1.6. Reference 185

http://docs.python.org/library/re.html#re.UNICODE
http://docs.python.org/library/re.html#re.MULTILINE
http://docs.python.org/library/re.html#re.MULTILINE
http://docs.python.org/library/re.html#re.DOTALL
http://docs.python.org/library/re.html#re.IGNORECASE
http://docs.python.org/library/re.html#re.IGNORECASE
http://docs.python.org/library/re.html#re.UNICODE
http://docs.python.org/library/re.html#re.MULTILINE
http://docs.python.org/library/re.html#re.DOTALL
http://docs.python.org/library/re.html#re.IGNORECASE

Orange3-Textable Documentation, Release 3.1.11

[
{

"mode": "Tokenize",
"regex": ".",
"dot_all": true,
"annotation_key": "type",
"annotation_value": "other"

},
{

"mode": "Tokenize",
"regex": "\\w",
"ignore_case": true,
"unicode_dependent": true,
"annotation_key": "type",
"annotation_value": "consonant"

},
{

"mode": "Tokenize",
"regex": "[aeiouy]",
"ignore_case": true,
"annotation_key": "type",
"annotation_value": "vowel"

},
{

"mode": "Tokenize",
"regex": "[0-9]",
"annotation_key": "type",
"annotation_value": "digit"

}
]

186 Chapter 1. Contents

	Contents
	Introduction
	Textable’s basics
	Advanced topics
	Cookbook
	Case studies
	Reference

