

 [image: _images/banner.jpg]

Orange Textable documentation

Welcome to the documentation of Orange Textable.

This documentation is divided in five main sections (see detailed contents
below):

	The Introduction offers a brief overview of what
Orange Textable can do, as well as how it should be installed and
configured. This is what you should read first if you are unsure whether
Orange Textable is the right piece of software for your needs or how to set
it up.

	Section Textable’s basics is a tutorial that
introduces the basic concepts underlying Orange Textable and its main usage
patterns. This should be your first reading once you’ve determined that
Orange Textable can be useful to you and installed it.

	Section Advanced topics enables the advanced user to
benefit from more complex text queries using regex and xml markups. This part
implies a solid knowledge of the above Basics section.

	In the Cookbook section, you’ll find a number of concise,
illustrated recipes describing how to perform various basic tasks with
Orange Textable. When starting a new project, you might want to skim through
this section in case some elementary operation you need is listed there.

	Section Case studies presents several illustrations of
the application of Orange Textable to more complex and interesting problems
in text data analysis.

	The Reference is an exhaustive explanation of the role
and effect of every component of Orange Textable’s interface. The purpose of
this part of the documentation is to help you find a specific piece of
information about Orange Textable’s operation when using it for your own
projects.

Contents

	Introduction
	Features

	Illustration: mining Humanist

	Installation

	Configuration

	Credits

	How to cite Orange Textable

	Textable's basics
	1. Strings, segments, and segmentations

	2. Keyboard input, widget labelling and segmentation display

	3. Merging and segmenting

	4. Segmenting data into smaller units

	5. The uses of annotating segmentations

	6. Merging and annotating

	7. From segmentations to tables

	8. Counting segment types

	9. Counting in specific contexts

	10. Tagging table rows with segments and labels

	 Advanced topics
	1. Converting XML markup to annotations

	2. Merging units with XML annotations

	3. A note on regular expressions

	4. Partitioning segmentations using a regex

	5. Using a segmentation to filter another

	6. XML Annotation-based selection using a regex

	Cookbook
	Text input

	Text output

	Text preprocessing and recoding

	Segmentation manipulation

	Text analysis

	Table output

	Case studies
	Term frequency comparison in Melville's Moby Dick

	Stylometric analysis of Shakespeare's Titus Andronicus

	Reference
	Text import widgets
	Text Field

	Text Files

	URLs

	Segmentation processing widgets
	Preprocess

	Recode

	Merge

	Segment

	Select

	Intersect

	Extract XML

	Display

	Table construction widgets
	Count

	Length

	Variety

	Cooccurrence

	Context

	Category

	Conversion/export widgets
	Convert

	Message

	JSON im-/export format
	Generalities

	File list

	URL list

	Substitution list

	Regular expression list

Introduction

Orange Textable is an open-source add-on bringing advanced text-analytical
functionalities to the Orange Canvas [http://orange.biolab.si/] data mining
software package (itself open-source). It essentially enables users to build
data tables on the basis of text data, by means of a flexible and intuitive
interface. Look at the following example to see it in
typical action.

Orange Textable was designed and implemented by LangTech Sàrl [http://langtech.ch] on behalf of the department of language and
information sciences (SLI) [http://www.unil.ch/sli] at the University of
Lausanne [http://www.unil.ch] (see Credits and
How to cite Orange Textable).

	Features

	Illustration: mining Humanist

	Installation
	Windows installation

	MacOS X installation

	Configuration

	Credits

	How to cite Orange Textable

Features

Orange Textable offers the following features:

	text data import from keyboard, files, or urls

	support for various encodings, including Unicode

	standard preprocessing and custom recoding (based on regular expressions)

	segmentation and annotation of various text units (letters, words, etc.)

	ability to extract and exploit XML-encoded annotations

	automatic, random, or arbitrary selection of unit subsets

	unit context examination using concordance and collocation tables

	calculation of frequency and complexity measures

	recoded text data and table export

Illustration: mining Humanist

The following example is meant to show what Orange Textable typically does,
without considering (for now) every detail of how it does it.

In a paper reflecting on terminology in the field of Digital Humanities
1, Patrik Svensson compares the evolution of the frequency of expressions
Humanities Computing and Digital Humanities over 20 years of archives of
the Humanist discussion group [http://dhhumanist.org/]. He uses these
figures to show that while the former denomination remains prevalent over
these two decades, the latter has been quickly gaining ground since the 2000s.

The same experiment can be run with Orange Textable, by building a “visual
program” like the one shown on figure 1 below:

[image: Mining Humanist with an Orange Textable schema]

Figure 1: Mining Humanist with an Orange Textable schema.

Such a program is called a schema. Its visible part consists of a network
of interconnected units called widget instances. Each instance belongs to a
type, e.g. URLs, Recode, Segment, and so on. Widgets
are the basic blocks with which a variety of text analysis applications can be
built. Each corresponds to a fundamental operation, such as “import data from
an online source” (URLs) or “replace specific text patterns with
others” (Recode) for example. Connections between instances determine
the flow of data in the schema, and thus the order in which operations are
carried on. Several parallel paths can be constructed, as demonstrated here
by the Recode instance, which sends data to Segment as well as
Count.

Widget instances can (and indeed must) be individually parameterized in order
to “fine-tune” their operation. For example, double-clicking on the
Recode instance of figure 1 above displays
the interface shown on figure 2 below. What this
particular configuration means is that every line beginning with symbol |
or > (Regex field) should be replaced with an empty string
(Replacement string): in other words, remove those lines that are marked
as being part of a reply to another message. There is a fair amount of
variation between widget interfaces, but regular expressions play an important
role in many of them and Orange Textable’s flexibility owes a lot to them.

[image: Interface of Recode widget in the Humanist example]

Figure 2: Interface of the Recode widget.

After executing the schema of figure 1 above, the
resulting frequencies can be viewed by double-clicking on the Data Table
instance, whose interface is shown on figure 3
below. On the whole, these figures lend themselves to the same interpretation
as that of Patrik Svensson, but they differ wildly from the frequencies he
reports. This might be explained by the fact that, in the present
illustration, we have used preprocessed data made available on the Humanist
website [http://dhhumanist.org/text.html], or it might be that we have not
processed the data exactly like Svensson did. The user can always refer to the
Orange Textable schema (including the parameters of each instance) to
understand exactly the operations that it performs. 2 In this sense, Orange
Textable does not only attempt to make the construction of text analysis
programs easier; it aims to make communicating and understanding such
programs easier.

[image: Monitoring the frequency of two expressions over time]

Figure 3: Monitoring the frequency of Humanities Computing vs. Digital Humanities.

	1

	Svensson, P. (2009). Humanities Computing as Digital Humanities.
Digital Humanities Quarterly 3(3). Available here [http://digitalhumanities.org/dhq/vol/3/3/000065/000065.html].

	2

	The schema can be downloaded from here. Note that two decades of
Humanist archives weigh dozens of megabytes and that retrieving these
data from the Internet can take a few minutes depending on bandwidth.
Please be patient if Orange Textable appears to be stalled when the
schema is being opened.

Installation

Python v2.7 and Orange Canvas v2.7 must imperatively be installed before
Orange Textable. Please note that Orange Textable is not compatible with
Orange 3 at the time of writing. After installation, Orange Textable appears in
the form of an additional tab in Orange Canvas.

The installation procedure is slightly different on Windows and MacOS X. 1

	Windows installation

	MacOS X installation

	1

	Although several users have reported successful installation on Linux,
it has not been specifically tested.

Windows installation

	On the Orange 2.7 download page [http://orange.biolab.si/orange2/],
download the software installer by following the Orange 2.7 installer for
Windows link.

	Execute the Orange Canvas installer and click Ok at each stage
(including the stages of the installation of Python modules).

	Start Orange Canvas then select menu Options > Add-ons… (see
figure 1).

[image: How to open the Add-ons management dialog]

Figure 1: Opening the Add-ons management dialog in Orange Canvas.

	In the window which has opened (see figure 2), click on Refresh list, check the
Orange-Textable box then the Ok button (twice).

[image: Orange Textable marked for installation]

Figure 2: Orange Textable marked for installation.

If step 4 was carried out correctly, the Orange Textable tab appears in the
list on the left of the window of Orange Canvas after having exited and
restarted the program.

Only if step 4 was not correctly carried out:

	Go to PyPI [https://pypi.python.org/pypi/Orange-Textable] to download
the Orange Textable Windows installer (MS Windows installer, .exe
file).

	Execute the Orange Textable installer and click on Ok for each
stage.

If install was completed without issues but nothing happens when trying to
launch the application:

Try to follow the steps described here [http://bit.ly/1P07vkg].

MacOS X installation

	On the Orange 2.7 download page [http://orange.biolab.si/orange2/],
download the software installer by following the Orange 2.7 bundle for OSX
link.

	In the window that opens at the end of the download, drag the Orange Canvas
icon and drop it over the Applications folder icon.

	Start Orange Canvas then select menu Options > Add-ons… (see
figure 1).

[image: How to open the Add-ons management dialog]

Figure 1: Opening the Add-ons management dialog in Orange Canvas.

	In the window which has opened (see figure 2), click on Refresh list, check the
Orange-Textable box then the Ok button (twice).

[image: Orange Textable marked for installation]

Figure 2: Orange Textable marked for installation.

If step 4 was carried out correctly, the Orange Textable tab appears in the
list on the left of the window of Orange Canvas after having exited and
restarted the program.

Only if step 4 was not correctly carried out:

	Go to PyPI [https://pypi.python.org/pypi/Orange-Textable] to download
the source distribution of Orange Textable (.tar.gz file).

	Decompress the archive then open a Terminal and navigate to the
decompressed archive (see below for more details on this step). Then enter
the following instruction:

python setup.py install

NB: if this process fails, it is sometimes possible to resolve the problem
by replacing the instruction with this one:

/Applications/Orange.app/Contents/MacOS/python setup.py install

In case of difficulty in “opening a Terminal and navigating to the
decompressed archive…”:

	Drag and drop on the desktop the Orange-Textable-X file (where X is
the version number, e.g. “1.5”) which can be found in the downloaded
archive.

	In Finder > Applications > Utilities, double-click on Terminal.

	In the Terminal, correctly enter the instruction:

cd Desktop/Orange-Textable-X

(where X still is the version number).

	Then enter the instruction:

python setup.py install

(or if necessary, the alternative instruction shown here above).

Configuration

Although this is by no means required for using Orange Textable, schemas
created with Orange Canvas tend to be easier to read after deactivating
the display of channel names on widget connections. This can be done using
the Settings dialog of Orange Canvas, accessible on Windows via the
menu entry Options > Settings (see figure 1),
and on Mac OSX via the menu entry Orange > Preferences (see figure 2).

[image: How to open the Settings dialog on Windows]

Figure 1: Opening the Settings dialog on Windows.

[image: How to open the Settings dialog on Mac OSX]

Figure 2: Opening the Settings dialog on Mac OSX.

Once the dialog has been opened, the Show channel names between widgets
checkbox should be deselected, as in figure 3.

[image: Deactivating the display of channel names on widget connections.]

Figure 3: Deactivating the display of channel names on widget connections.

Credits

Textable was designed and implemented by LangTech Sàrl [http://langtech.ch] on behalf of the department of language and
information sciences (SLI) [http://www.unil.ch/sli] at the University of
Lausanne (Unil) [http://www.unil.ch].

The largest part of funding was initially provided by the Unil’s Teaching
innovation fund (Fonds d’innovation pédagogique - FIP [http://www.unil.ch/fip]), and led to the release of Textable v1.0 in summer
2012.

Textable’s development has continued between 2012 and 2013, still carried on
by LangTech Sàrl [http://langtech.ch], while the program was being
gradually integrated to courses taught at Unil’s department of SLI [http://www.unil.ch/sli] (where most of the tutorials that would later
become the Getting started section of this
documentation have been created).

In automn 2013, Textable became a registered Orange Canvas add-on and was
renamed to Orange Textable (v1.3). This promotion has made it possible to
reach a much larger pool of users, as witnessed by a steadily increasing
number of downloads.

In early 2014, Unil’s FIP [http://www.unil.ch/fip] has renewed its support
to Orange Textable by granting a maintenance funding. This has made it
possible for LangTech Sàrl [http://langtech.ch] to collaborate with the
creators of Orange Canvas, University of Ljubljana’s Biolab [http://www.fri.uni-lj.si/en/laboratories/biolab/] for producing
version v1.4 of Orange Textable.

In the meantime, Unil’s Faculty of Arts [http://www.unil.ch/lettres] has
granted additional funding for translating Orange Textable’s User guide from
French to English, then converting it into the electronic form you’re
currently reading. Unil’s department of language and information sciences [http://www.unil.ch/sli] has provided some financial support to the project
in 2015, which made it possible to handle warnings and error messages in a
more user-friendly fashion in Orange Textable v1.5.2.

Besides LangTech Sàrl [http://langtech.ch] and Aris Xanthos [http://www.unil.ch/unisciences/arisxanthos] who have been involved at about
every step of Orange Textable’s conception, implementation, documentation, and
so on, a special mention should be made to Benjamin Gay (specifications,
conception and implementation), people at Biolab [http://www.fri.uni-lj.si/en/laboratories/biolab/] (in particular Blaž
Zupan and Aleš Erjavec for conception and implementation work), Corinne
Morey (French to English translation of the user guide, preparation of the
online version of the documentation, and creation of most cookbook recipes),
Douglas Duhaime (case study design and write-up), and many students (and a
growing number of scholars) mostly at Unil [http://www.unil.ch] for their
indispensable feedback as users of Orange Textable.

Citing

If Orange Textable has been useful in preparing a scientific publication of
yours, a citation would be a great way to say so. Here is the relevant
bibliographic reference:

Xanthos, Aris (2014). Textable: programmation visuelle pour l’analyse de
données textuelles. In Actes des 12èmes Journées internationales d’analyse
statistique des données textuelles (JADT 2014), pp. 691-703.
[read online] [http://lexicometrica.univ-paris3.fr/jadt/jadt2014/01-ACTES/57-JADT2014.pdf]

Textable’s basics

This part of the documentation is a tutorial that introduces the basic usage patterns of Orange Textable.
It is meant to be read in the indicated order. Note that a basic familiarity with the interface of Orange Canvas is assumed; if needed,`this short tutorial
<http://orange.biolab.si/getting-started/>`_ should provide you with the necessary backround.

Orange Textable is mostly about taking text in input and producing tables in output.
What makes the transition from text to tables possible and hopefully easy is the concept of “segmentation”, which is at the heart of Orange Textable.

In this section, you’ll learn about segmentations and closely related topics such as strings, segments, widget labels and annotations.
First, you’ll learn how to import texts, second to segment it, third to annotate those segmentations in order to transform it into tables.
Tables enable users to analyze text data (context, count, length, variety, cooccurrences, etc).

	1. Strings, segments, and segmentations

	2. Keyboard input, widget labelling and segmentation display

	3. Merging and segmenting

	4. Segmenting data into smaller units

	5. The uses of annotating segmentations

	6. Merging and annotating

	7. From segmentations to tables

	8. Counting segment types

	9. Counting in specific contexts

	10. Tagging table rows with segments and labels

1. Strings, segments, and segmentations

The main purpose of Orange Textable is to turn text strings into data tables.
As we will see, there are several methods for importing text strings, the
simplest of which is keyboard input using widget
Text Field (see also Keyboard input, widget labelling and segmentation
display or
Cookbook: Import text from keyboard.
Whenever a new string is imported, it is assigned a unique identification number
(called string index) and stays in memory as long as the widget that imported
it.

Consider the following string of 16 characters (note that whitespace counts as
a character too).

[image: example1]

Figure 1 : A simple string.

What makes the transition from text strings to data tables possible is the concept of a segmentation.
What is a segmentation ? A segmentation is a string analysis based on a ordered list of segments.
For instance, a string like “a simple example” above can be analyzed in many different ways:
it consists of 3 words but also 16 characters, 14 letters, 6 vowels, 3 e’s, 2 mple’s, etc.

In the previous example, all the segments of a given segmentation refer to the same string.
However, a segmentation can span several strings.
Thus, the segments of a segmentation can cover different strings, as in the example below, where the segmentation “a”, “simple”, “plan”
spans two strings (“a simple example” and “what’s the plan”).
All segments referring to a given string must be grouped together, in the order in which they appear in the string.

[image: example2]

Figure 2 : A segmentation can span several strings.

1.1. See also

	Getting started: Keyboard input and segmentation display

	Cookbook: Import text from keyboard

2. Keyboard input, widget labelling and segmentation display

Typing text in a Text Field widget is the simplest way to
import a string in Orange Textable. As a result, the widget creates a segmentation with a single segment covering the entire string. (see
figure 1 below):

[image: Example usage of widget Text Field]

Figure 1: Typing some simple examples in widget Text Field.

Each segmentation is identified by a label which is the name of the widget that creates the segmentation.
You can rename this widget to make the label more meaningful (see :ref: figure 2 <keyboard_input_segmentation_fig2> below):

[image: Example Widget Label]

Figure 2: Typing an extract of Salammbô in widget :ref: Text Field and giving it a label (Flaubert).

As we will see later, a segmentation can also store annotations associated with segments.

This widget’s simplicity makes it most adequate for pedagogic purposes.
Later, we will discover other, more powerful ways of importing strings such as Text Files and URLs.
Those importation widgets create a segmentation with one segment for each imported file or URL.

The Display widget can be used to visualize the details of a segmentation.
By default, it shows the segmentation’s label followed by each successive segment’s address [#]_ and content.
A segmentation sent by a Text Field instance will contain a single segment
covering the whole string (see figure 3 below).

[image: Example usage of widget Display]

Figure 3 : Viewing Salammbô in widget Display.

By default, Display passes its input data without
modification to its output connections. It is very useful for viewing
intermediate results in an Orange Textable workflow and making sure that other
widgets have processed data as expected.

2.1. See also

	Reference: Text Field widget

	Reference: Display widget

	Cookbook: Import text from keyboard

	Cookbook: Display text content

2.2. Footnotes

[#] A segment is basically a substring of characters. Every segment has an address consisting of three elements:
1) string index
2) initial position within the string
3) final position
In the case of a simple example, address (1, 3, 8) refers to substring simple, (1, 12, 12) to character a, and (1, 1, 16) to the entire string.
The substring corresponding to a given address is called the segment’s content.

3. Merging and segmenting

Computerized text analysis often implies consolidating various text sources
into a single corpus. In the framework of Orange Textable, this amounts
to grouping segmentations together, and it is the purpose of the
Merge widget.

To try out this widget, create on the canvas two instances of
Text Field, an instance of Merge and an
instance of Display (see
figure 1 below). Type
a different string in each Text Field instance (e.g.
a simple example and another example) and assign it a distinct label (e.g.
text_string and text_string2). Eventually, connect the instances as
shown on figure 1.

[image: Schema illustrating the usage of widget Merge]

Figure 1: Grouping a simple example with another example using widget Merge.

The interface of widget Merge (see
figure 2 below) features 4 options :
2 annotation keys; the possibility of copying segment inputs annotations if any and the option of fusing segments that have the same adress.

[image: Interface of widget merge]

Figure 2: Interface of widget Merge.

We will return later to the purpose
of checkbox Import labels with key, as well as Auto-number with key. Leave them unchecked for now.

[image: Displaying a merged segmentation]

Figure 3: Merged segmentation.

Figure 3 above shows the
resulting merged segmentation, as displayed by widget
Display. As can be seen, Merge makes it easy
to concatenate several strings into a single segmentation. If the incoming
segmentations contained several segments, each of them would appear in the
output segmentation, in the order they have been linked to the Merge widget.

Exercise: Can you add a new instance of Merge to the
schema illustrated on figure 1
above and modify the connections (but not the configuration of existing
widgets) so that the segmentation given in
figure 4 below appears in the
Display widget?
(solution)

[image: 3 segments: "a simple example", "another example", "another example"]

Figure 4: The segmentation requested in the exercise.

Solution: (back to the exercise)

[image: New Merge widget takes input from old one and Text field, and sends output to Display]

Figure 5: Solution to the exercise.

3.1. See also

	Reference: Merge widget

	Cookbook: Merge several texts

4. Segmenting data into smaller units

We have seen previously how to combine
several segmentations into a single one. We will often be performing the
inverse operation: create a segmentation whose segments are parts of another
segmentation’s segments. Typically, we will be segmenting strings into words,
characters, or any kind of text units that will be later counted, measured,
and so on. This is precisely the purpose of widget Segment.

To try it out, create a new schema with an instance of Text Field
connected to an instance of Segment, itself connected to an instance of
Display (see figure 1
below). In what follows, we will suppose that the string typed in
Text Field is a simple example.

[image: Schema illustrating the usage of widget Segment]

Figure 1: A schema for testing the Segment widget

In its basic form (i.e. with Advanced settings unchecked, see
figure 2 below),
Segment offers four parameters in the drop-down menu named segment type. The string can be segmented into lines, letters, words or using a regex. If chose, the widget then looks for all
matches of the regex pattern in each successive input segment, and creates for
every match a new segment in the output segmentation.

[image: Interface of widget Segment configured with regex "\w+"]

Figure 2: Interface of the Segment widget, configured for word segmentation

For instance, the regex \w+ divides each incoming segment into sequences
of alphanumeric character (and underscore)–which in our case amounts to
segmenting a simple example into three words. To obtain a segmentation
into letters (or to be precise, alphanumeric characters or underscores),
simply use \w.

Of course, queries can be more specific. If the relevant unit is the word,
regexes will often use the \b anchor, which represents a word boundary.
For instance, words that contain less than 4 characters can be retrieved
with \b\w{1,3}\b, those ending in -tion with \b\w+tion\b, and the
inflected forms of retrieve with \bretriev(e|es|ed|ing)\b.

With the Advanced settings checked (see figure 3 below), several regexes can be added to the list. Regexes can be tokenized or splited, depending on your research goal. For more information, see
Segment widget

[image: _images/segment_advanced_example.png]

4.1. See also

	Reference: Segment widget

	Cookbook: Segment text in smaller units

5. The uses of annotating segmentations

Annotations are bits of information attached to text segments.
They let you go beyond what’s in the text, and extend Orange Textable’s analytic capacities
from textual content to user-provided interpretative information and metadata.

In Orange Textable, an annotation is a piece of information attached to a segment.
Annotations consist of two parts : key and value . For instance, in
the now classical case of the word segmentation of a simple example (see :ref: figure 1<uses_annotating_segmentations_fig1> below),
segment simple could be associated with the annotation {part of speech : adjective};
this annotation’s key is part of speech and its value is adjective .

[image: example annotations]

Figure 1 : Annotating simple as an adjective.

A segment can have zero, one, or several annotations attached to it.
The same segment could be simultaneously associated with another annotation such as
{word category : lexical} , or any {key : value} pair deemed relevant.

[image: segments with various annotations]

Figure 2 : Segments with various annotations

Note that annotations keys are unique : Since they serve to recognize various annotation values attached to a single segment,
annotation keys cannot be duplicated within the segment. On :ref: figure 2 <uses_annotating_segmentations_fig2> above,
“simple” can only have one value at a time for key “category” .

Even though we have carefully ignored them so far, annotations play a
fundamental role in text data processing and analysis. They make it possible
to go beyond the basic level of forms that are “physically” present in a text
and tap into the more abstract–and often more interesting–level of the
interpretation of these forms.

For instance, the texts composing a given corpus could be annotated with
respect to their genre (novel , short story , and so on), and the parts of
these texts might be annotated with regard to their discourse type
(narrative , description , dialogue , and so on). Such data could be
exploited to study the distribution of discourse types as a function of genre,
which would be at best extremely difficult, if ever possible, without having
encoded the relevant information by means of annotations.

In the following section, we will see a simple method for creating annotations in Orange Textable using the :ref: Merge widget,
and then various ways of exploiting such annotations.

6. Merging and annotating

Whenever Textable widgets manipulate text contents, they can manipulate
annotations instead: you can search for segments attached to specific
annotations, count annotations, merge data based on their annotations, etc.

Widget Merge makes it possible to convert the labels of its input
segmentations into annotation values. Suppose for instance that three
instances of Text Field have been created: two instances containing a
text in English, and one containing a text in French. We might want to merge
these three segmentations into a single one, where each segment would be
associated with an annotation whose key is language and whose value is
either en or fr. The first step would then be to rename
each Text Field instance with the desired annotation value for this text, as
shown on figure 1 below.

[image: Specifying annotations values using the label of Text field instances]

Figure 1: Specifying annotations values using the label of Text Field instances.

The three instances of Text Field should then be connected to an
instance of Merge as shown on figure 2
below.

[image: Creating annotations with Merge]

Figure 2: Example schema for creating annotations with Merge.

One must still specify, in the interface of Merge, the annotation key
to which values en and fr should be associated. This can be done by
entering the string language in field Import labels with key, having
previously ensured that labels would actually be converted into annotation
values by checking the box at the left of this line (see figure 3 below). In order to give a value to each string, check Auto-number with key box. As a key, you can choose text, num, author, etc.
Each segment will be given a specific number.
.. _annotating_merging_fig3:

[image: Importing labels as annotation values with Merge]

Figure 3: Importing labels as annotation values with Merge.

The result of these operations can be viewed using an instance of
Merge, whose output is shown on
figure 4 below. For each segment in
the merged segmentation, an annotation value en or fr associated with key
language is displayed between the segment’s address and its content. Note that the auto-number value offers the possibility to access each segment by using
the drop-down menu Go to segment.
.. _annotating_merging_fig4:

[image: Annotations created with Merge]

Figure 4: Annotations created with Merge.

6.1. See also

	Reference: Text Field widget

	Reference: Merge widget

7. From segmentations to tables

The main purpose of Orange Textable is to build tables based on texts. Central
to this process are the segmentations we have learned to create and manipulate
earlier. Indeed, Orange Textable provides a number of
widgets for table construction, and they
all operate on the basis of one or more segmentations.

For the time being, we will focus on the construction of frequency tables,
which are very common in computerized text analysis and which will serve as
introduction to other types of tables. For the sake of simplicity, consider
first the segmentation of a simple example into letters. Counting the
frequency of each letter type yields a table such as the following:

Table 1: Frequency of letter types.

	a

	s

	i

	m

	p

	l

	e

	x

	2

	1

	1

	2

	2

	2

	3

	2

More often, we will be interested in comparing frequency across several
contexts. For instance, if the word segmentation of a simple example is
also available, it may be used together with the letter segmentation to
produce a so-called contingency table (or document–term matrix):

Table 2: Frequency of letters within words.

	
	a

	s

	i

	m

	p

	l

	e

	x

	a

	1

	0

	0

	0

	0

	0

	0

	0

	simple

	0

	1

	1

	1

	1

	1

	1

	0

	example

	1

	0

	0

	1

	1

	1

	2

	1

In a real application, rows could correspond to the writings of an author and
columns to selected prepositions, for instance. The general idea is to
determine the number of occurrences of various units in various contexts.
Such data can then be further analyzed, typically by means of a statistical
test (aiming at answering the question “does the distribution of units depend
on contexts”) or a graphical representation (making it possible to visualize
the attraction or repulsion between specific units and contexts).

7.1. See also

	Reference: Table construction widgets

8. Counting segment types

Widget Count takes in input one or more segmentations and
produces frequency tables such as tables 1 and 2
here. To try it out, create a schema such as
illustrated on figure 1 below. As usual,
we will suppose that the Text Field instance contains
a simple example. The Segment instance is configured for
letter segmentation (Regex: \w and Widget Segment label:
letters). The default configuration of Data Table (from the Data tab of Orange
Canvas) needs not be modified for this example.

[image: Schema for testing the Count widget]

Figure 1: Schema for testing the Count widget.

Basically, the purpose of widget Count is to determine the frequency
of segment types in an input segmentation. The label of that segmentation must
be indicated in the Segmentation menu of section Units in the widget’s
interface, while other controls may be left in their default state for now
(see figure 2 below). Clicking
Compute then double-clicking the Data Table instance should display
essentially the same data as table 1
here (with possible variations in
the order of columns).

[image: Counting the frequency of letter types with widget :ref:`Count`]

Figure 2: Counting the frequency of letter types with widget Count.

Note that checkbox Send automatically is unchecked by default so that
the user must click on Send to trigger computations. The motivation for
this default setting is that
table construction widgets can be quite
slow when operating on large segmentations, and it can be annoying to see
computations starting again whenever an interface element is modified.

To obtain the frequency of letter bigrams (i.e. pairs of successive
letters), simply set parameter Sequence length to 2 (see
table 1 below). If the value of this
parameter is greated than 1, the string specified in field Intra-sequence
delimiter is inserted between successive segments for the sake of
readability–which is more useful when segments are longer than individual
letters. Note that in this example, word boundaries are not taken into
account–nor even known, in fact–which is why bigrams as and ee have a
nonzero frequency.

Table 1: Letter bigram frequency.

	as

	si

	im

	mp

	pl

	le

	ee

	ex

	xa

	am

	1

	1

	1

	2

	2

	2

	1

	1

	1

	1

8.1. See also

	Getting started: From segmentations to tables

	Reference: Count widget

	Reference: Table construction widgets

	Cookbook: Count unit frequency

9. Counting in specific contexts

Section Contexts of widget Count’s interface lets the
user define the contexts in which units should be counted. Thus, while
the settings of section Units affect the columns of the resulting table,
those of section Contexts affect its rows.

In the example of the previous section,
setting Mode to No context indicated that units were to be counted
globally in the selected segmentation; as a result, the resulting table
contained a single row (aside from the header row). Orange Textable offers
three other modes corresponding to three different definitions of contexts.

[image: Interface of widget Count, Sliding window mode]

Figure 1: Interface of widget Count, Sliding window mode.

When Mode is set to Sliding window (see
figure 1 above), context is defined
as a “window” of n consecutive segments which “slides” from the beginning
to the end of the segmentation. In the case of the letter segmentation of
a simple example (as obtained with the schema illustrated in
the previous section), setting the number
of segments in the window (Window size) to 5 yields the following
successive contexts: asimp, simpl, imple, mplee, pleex, and so on
(see table 1 below). This mode is
useful for studying the evolution of unit frequencies throughout a
segmentation.

Table 1: Frequency of letters in a “sliding window” of size 5.

	
	a

	e

	i

	m

	l

	p

	s

	x

	1

	1

	0

	1

	1

	0

	1

	1

	0

	2

	0

	0

	1

	1

	1

	1

	1

	0

	3

	0

	1

	1

	1

	1

	1

	0

	0

	4

	0

	2

	0

	1

	1

	1

	0

	0

	5

	0

	2

	0

	0

	1

	1

	0

	1

	6

	1

	2

	0

	0

	1

	0

	0

	1

	7

	1

	2

	0

	1

	0

	0

	0

	1

	8

	1

	1

	0

	1

	0

	1

	0

	1

	9

	1

	0

	0

	1

	1

	1

	0

	1

	10

	1

	1

	0

	1

	1

	1

	0

	0

When Mode is set to Left-right neighborhood (see figure 2), context is defined on the basis of
adjacent segment types occurring to the left and/or right of each position.

[image: Interface of widget Count, Left-right neighborhood mode]

Figure 2: Interface of widget Count, Left-right neighborhood mode.

For instance, setting Left context size to 1 and Right context size
to 0 amounts to counting the frequency of each segment type given the type
that occurs immediately to its left. This particular table is often called
“transition matrix” (see table 2
below). The string selected in the Unit position marker string is used
to indicate the position where units appear in the context. Thus,
table 2 shows that both m and s
appear once immediately to the right of an a (i.e. in context a_).
To take another example, setting Right context size to 2, we would find
that e occurs once both in context l_ex and e_xa.

Table 2: Frequency of letter (row) to letter (column) transitions.

	
	a

	e

	i

	m

	l

	p

	s

	x

	a_

	0

	0

	0

	1

	0

	0

	1

	0

	s_

	0

	0

	1

	0

	0

	0

	0

	0

	i_

	0

	0

	0

	1

	0

	0

	0

	0

	m_

	0

	0

	0

	0

	0

	2

	0

	0

	p_

	0

	0

	0

	0

	2

	0

	0

	0

	l_

	0

	2

	0

	0

	0

	0

	0

	0

	e_

	0

	1

	0

	0

	0

	0

	0

	1

	x_

	1

	0

	0

	0

	0

	0

	0

	0

Finally, when Mode is set to Containing segmentation, unit types are
counted whithin the segment types of a second segmentation, as illustrated in
table 2 here (frequency of letters
whithin words). Segment A is considered to be contained within segment B
if the following three conditions are met:

	A and B refer to the same string (their addresses have the same string index)

	A’s initial position is greater than or equal to B’s initial position

	A’s final position is lesser than or equal to B’s initial position

To try this mode out, modify the schema used in the
previous section as illustrated on
figure 3 below.

[image: Schema for testing the Count widget (Containing segmentation mode)]

Figure 3: Schema for testing the Count widget (Containing segmentation mode).

The first instance of Segment produces a word segmentation (Regex:
\w+ and Widget label: Words) which the second instance (the upper one) further decomposes into letters (Regex: \w and
Widget label: Letters). The instance of Count is
configured as shown on figure 4
below. The resulting table is the same as table 2
here (possibly with a different ordering
of columns).

[image: Interface of widget Count, Containing segmentation mode]

Figure 4: Configuration of widget Count for counting letters in words.

Note that in this mode, checking the Merge contexts box still restricts
counting to those units that are contained whithin the segments of another
segmentation, but without treating each context type separately. In the
case of letters whithin words, there is no difference between this mode and
mode No context (see previous section).
It does however make a difference in the case of letter bigram counting,
because those bigrams that straddle a word boundary will be excluded in this
case (contrary to what can be seen in table 1
here).

9.1. See also

	Getting started: Counting segment types

	Getting started: From segmentations to tables

	Reference: Count widget

	Cookbook: Count unit frequency

	Cookbook: Count occurrences of smaller units in larger segments

	Cookbook: Count transition frequency between adjacent units

	Cookbook: Examine the evolution of unit frequency along the text

10. Tagging table rows with segments and labels

There are several situations in which annotations attached to a segment can be
used in place of this segment’s content. A particularly common case consists
in using annotations for tagging the rows of a table built with an instance
of Count, Length, Variety, or Category.

Consider the example of the texts in English and French introduced
here. Suppose that after having merged them into
a single segmentation with an instance of Merge (Widget Merge
label: Texts ; Import labels with key: language), we segment these three texts into letters with an instance
of Segment (Regex \w, Widget Segment label: letters),
as in the schema shown on
figure 1 below; both
segmentations (texts and letters) can then be sent to an instance of
Count for building a table with the frequency of each letter in
each text.

[image: Counting letter frequency in three texts]

Figure 1: Schema for counting letter frequency in three texts.

Let us suppose, first, that the instance of Count is configured as
shown on figure 2 below, so that
the definition of contexts–that is, rows of the frequency table–is based on
the content of the three texts.

[image: Counting letter frequency in three texts]

Figure 2: Counting letter frequency in texts.

Here is the resulting table, disregarding possible variations in row and/or
column order:

Table 1: Letter frequency in three texts.

	
	a

	t

	e

	x

	i

	n

	E

	g

	l

	s

	h

	o

	r

	u

	f

	ç

	a text in English

	1

	2

	1

	1

	2

	2

	1

	1

	1

	1

	1

	0

	0

	0

	0

	0

	another text in English

	1

	3

	2

	1

	2

	3

	1

	1

	1

	1

	2

	1

	1

	0

	0

	0

	un texte en français

	2

	2

	3

	1

	1

	3

	0

	0

	0

	1

	0

	0

	1

	1

	1

	1

As can be seen, the default header of each row is the entire content of each
text. While this may not be a problem in a pedagogic example like this one,
it is easy to see why it would compromise the table’s readability in a real
application, where texts often contain thousand or even millions of
characters. To avoid that, it is useful to tag the table’s rows with
annotation values attached to segments rather than with these segments’
content. To that effect, the desired annotation key must be selected in the
Contexts section of widget Count’s interface.

[image: Tagging contexts with annotation values]

Figure 3: Tagging contexts with annotation values.

In the example of figure 3 above
key language has been selected, so that the resulting frequency table looks
like this:

Table 2: Letter frequency in two text types.

	
	a

	t

	e

	x

	i

	n

	E

	g

	l

	s

	h

	o

	r

	u

	f

	ç

	en

	2

	5

	3

	2

	4

	5

	2

	2

	2

	2

	3

	1

	1

	0

	0

	0

	fr

	2

	2

	3

	1

	1

	3

	0

	0

	0

	1

	0

	0

	1

	1

	1

	1

Besides the substitution of segment content by annotation values in row
headers, this example demonstrates an important consequence of this
manipulation: contexts associated with the same annotation value are, in
effect, collapsed together so that they form a single row. If this behavior
is not desired, it can be avoided by assigning distinct annotation values to
the contexts that must be kept separated (e.g. en_1 and en_2).

10.1. See also

	Getting started: Annotating by merging

	Reference: Merge widget

	Reference: Segment widget

	Reference: Count widget

	Reference: Table construction widgets

Advanced topics

Doing text mining and working on text statistics softwares require the knowledge of various textual formalisms.
Those formalisms are useful to make complex queries to text databases.
To benefit from the whole potential of Textable, you’ll need to learn how to manipulate XML markup and how to use some Regular expressions (Regex).

	1. Converting XML markup to annotations

	2. Merging units with XML annotations

	3. A note on regular expressions

	4. Partitioning segmentations using a regex

	5. Using a segmentation to filter another

	6. XML Annotation-based selection using a regex

1. Converting XML markup to annotations

Often, the best way (and sometimes the only way) to add a specific type of
annotation to a text is by “manually” adding it to the data. This is
frequently done with XML markup. For instance, the text that appears in the
Text Field instance of
figure 1 below is segmented
into words by means of <w> tags whose type attribute indicates the “part
of speech” associated with each word (e.g. DET, NOUN, PREP, and so on).

[image: Specifying annotations values using the label of Text field instances]

Figure 1: Sample text annotated using XML markup.

The role of widget Extract XML is to convert XML markup into annotated
segments (in the sense of Orange Textable). In its basic version (see
figure 2 below), the widget’s
interface essentially requires the user to specify the name of the XML
tags that must be imported, namely w in this example. The Remove markup
checkbox indicates whether further markup (if any) detected within
imported tags must be removed (there is no further markup in this example, so
that this option has no effect here).

[image: Interface of the Extract XML widget]

Figure 2: Interface of the Extract XML widget.

After connecting the above Text Field and Extract XML instances,
and the latter to an instance of Display, the reader can verify that
the resulting segmentation contains a segment for the content of each <w>
tag in the input text, and that this segment is annotated with key type and
value DET, NOUN, or PREP (the three first such segments are shown on
figure 3 below). Each
attribute-value pair of each XML tag has indeed been automatically converted
to a {key: value} annotation.

[image: Annotations imported using Extract XML]

Figure 3: Annotations imported using Extract XML.

1.1. See also

	Reference: Text Field widget

	Reference: Extract XML widget

	Cookbook: Convert XML tags to Orange Textable annotations

2. Merging units with XML annotations

Annotations can also be used for merging units (that is, columns) during
counting operations in particular. Consider again the example of annotations
extracted from XML data developed
here. The segmentation produced by
Extract XML can be sent to an instance of Count as on the schema
shown on figure 1 below.

[image: Counting segments extracted from XML data]

Figure 1: Counting segments extracted from XML data.

If the type annotation key is selected in section Units of widget
Count’s interface (see figure 2
below), the annotation values correponding to this key (namely part of speech)
will be counted in place of the segments’ content.

[image: Counting segments extracted from XML data]

Figure 2: Merging units using annotation values.

The resulting table is as follows:

Table 1: Part of speech frequency.

	NOUN

	DET

	PREP

	3

	1

	1

Of course, annotations may be used to merge units and contexts
simultaneously.

2.1. See also

	Getting started: Converting XML markup to annotations

	Reference: Extract XML widget

	Reference: Count widget

3. A note on regular expressions

Orange Textable widgets rely heavily on regular expressions (or regexes),
which are essentially a body of conventions for describing a set of strings
by means of a single string. These conventions are widely documented in books
and on the Internet, so we will not give here yet another introduction to this
topic. Nevertheless, a basic knowledge of regexes is required to perform any
non-trivial task with Orange Textable, and more advanced knowledge to
fully exploit the software’s possibilities.

The syntax of regexes is partly standardized, but some variations remain.
Orange Textable uses Python regexes, for which Python documentation is the
best source of information. In particular, it features a good
introduction to regexes [http://docs.python.org/2/howto/regex.html]. A
first reading might be limited to the following sections:

	Simple Patterns [http://docs.python.org/2/howto/regex.html#simple-patterns]

	More Metacharaters [http://docs.python.org/2/howto/regex.html#more-metacharacters]

Also recommended are the following:

	Compilation Flags [http://docs.python.org/2/howto/regex.html#compilation-flags]

	Lookahead Assertions [http://docs.python.org/2/howto/regex.html#lookahead-assertions]

	Greedy vs. Non-Greedy [http://docs.python.org/2/howto/regex.html#greedy-versus-non-greedy]

4. Partitioning segmentations using a regex

There are many situations where we might want so selectively in- or exclude
segments from a segmentation. For instance, a user might be want to exclude
from a word segmentation all those that are less than 4 letters long. The
Select widget is tailored for such tasks.

The widget’s interface (see figure 1
below) offers a choice between two modes: Include and Exclude. Depending
on this parameter, incoming segments that satisfy a given condition will be
either included in or excluded from the output segmentation. By default (i.e.
when the Advanced settings box is unchecked), the condition is specified
by means of a regex, which will be applied to each incoming segment
successively. (For now, the option Annotation key: (none) can be ignored.)

[image: Example usage of widget Select]

Figure 1: Excluding short words with widget Select.

In the example of figure 1, the
widget is configured to exclude all incoming segments containing no more than
3 letters. Note that without the beginning of segment and end of segment
anchors (^ and $), all words containing at least a sequence of 1 to
3 letters–i.e. all the words–would be excluded.

Note that Select automatically emits a second segmentation
containing all the segments that have been discarded from the main output
segmentation (in the case of figure 1
above, that would be all words less than 4 letters long). This feature is
useful when both the selected and the discarded segments are to be further
processed on distinct branches. By default, when Select is connected to
another widget, the main segmentation is being emitted. In order to send the
segmentation of discarded segments instead, right-click on the outgoing
connection and select Reset Signals (see
figure 2 below).

[image: Right-clicking on a connection and requesting to "Reset Signals"]

Figure 2: Right-clicking on a connection and requesting to Reset Signals.

This opens the dialog shown on
figure 3 below, where the user can
“drag-and-drop” from the gray box next to Discarded data up to the box
next to Segmentation, thus replacing the existing green connection.
Clicking OK validates the modification and sends the discarded data
through the connection.

[image: Dialog for modifying the connection between two widgets]

Figure 3: This dialog allows the user to select a non-default connection
between two widgets.

4.1. See also

	Reference: Select widget

	Cookbook: Include/exclude segments based on a pattern

5. Using a segmentation to filter another

In some cases, the number of forms to be selectively included in or excluded
from a segmentation is too large for using the Select widget.
A typical example is the removal of “stopwords” from a text: in English for
instance, although the list of such words is finite, it is too long to try
to encode it by means of a regex (cf. an example of such a list [http://members.unine.ch/jacques.savoy/clef/englishST.txt]).

The purpose of widget Intersect is precisely to solve that
kind of problem. It takes two segmentations in input and lets the user include
in or exclude from the first (source) segmentation those segments whose
content is the same as that of a segment in the second (filter)
segmentation. The widget’s basic interface is shown on
figure 1 below).

[image: Interface of widget Intersect configured for stopword removal]

Figure 1: Interface of widget Intersect configured for stopword removal.

Similarly to widget Select, user must choose between modes
Include and Exclude. The next step is to specify which incoming
segmentation plays the role of the Source segmentation and the Filter
segmentation. (Here again, we will ignore the Annotation key option for
the time being.)

In order to try out the widget, set up a schema similar to the one shown on
figure 2 below). The first
instance of Text Field contains the text to process (for
instance the
Universal Declaration of Human Rights [http://www.un.org/en/documents/udhr/]) and is labelled as such,
while the second instance, Text Field (1), contains the list of English
stopwords mentioned above. Both instances of Segment produce
a word segmentation with regex \w+; the only difference in their
configuration is the Segment Widget label , i.e. words for the segmentation of the UDHR
and stopwords for the segmentation of Text Field (1). Finally, the instance of
Intersect is configured as shown on
figure 1 above.

[image: Schema illustrating the use of the Intersect widget for stopword removal]

Figure 2: Example schema for removing stopword using widget Intersect .

The content of the first segments of the resulting segmentation is:

PREAMBLE
Whereas
recognition
inherent
dignity
equal
inalienable
rights
members
human
family
foundation
freedom
justice
peace
world
...

Exercise: Based on an instance of Text Field, produce
a segmentation containing all words less than 4 letters long that appear at
the beginning of each line, excluding I, you, he, she, we.
(solution)

Solution:

Figure 3 below shows a possible
solution. The 4 instances in the lower part of the schema (Text Field (1),
Segment (1), Intersect, and Display) are configured as in
figure 2 above–with
Text Field (1) containing the list of pronouns to exclude.

The difference lies in the addition of a Segment instance in
the upper branch. In this branch, the first instance (Segment) produces a
segmentation into lines with regex .+ while Segment (2) extracts the
first word of each line, provided it is shorter than 4 letters
(regex ^\w{1,3}\b). Intersect eventually takes care of excluding the
pronouns listed above.

[image: Solution to the exercise illustrating the Intersect widget]

Figure 3: A possible solution.

(back to the exercise)

5.1. See also

	Reference: Select widget

	Reference: Intersect widget

	Cookbook: Exclude segments based on a stoplist

6. XML Annotation-based selection using a regex

Another common way of exploiting annotations consists in using them to select
the segments that will be in-/excluded by an instance of Select (see
Partitioning segmentations) or
Intersect (see
Using a segmentation to filter another).
Thus, in the case of the XML data example introduced
here (and further developed
there), we might insert an instance of
Select between those of Extract XML and Count (see
figure 1 below) in order to include
only “content words”.

[image: Inserting an instance of Select to filter a segmentation]

Figure 1: Inserting an instance of Select to filter a segmentation.

In this simplified example, the Select instance could thus be
parameterized as indicated on figure 2 below), so as to exclude (Mode:
Exclude) those segments whose annotation value for key type (Annotation
key: type) is DET or PREP (Regex: ^(DET|PREP)$).

[image: Inserting an instance of Select to filter a segmentation]

Figure 2: Excluding segments based on annotation values with Select.

6.1. See also

	Getting started: Partitioning segmentations

	Getting started: Using a segmentation to filter another

	Getting started: Converting XML markup to annotations

	Getting started: Merging units with annotations

	Reference: Select widget

	Reference: Intersect widget

	Reference: Extract XML widget

	Reference: Count widget

Cookbook

This section describes how to get a number of basic tasks done with Orange
Textable. Each task is explained by means of a concise, illustrated recipe.
The goal is to provide the user with a set of elementary operations which,
once properly chained, may form the basic skeleton of various more ambitious
projects.

Text input

	Import text from keyboard

	Import text from file

	Import text from internet location

Text output

	Display text content

	Export text content (and/or change text encoding)

Text preprocessing and recoding

	Convert text to lower or upper case

	Remove accents from text

	Replace all occurrences of a string/pattern

Segmentation manipulation

	Segment text in smaller units

	Merge several texts

	Include/exclude units from a segmentation based on a pattern

	Filter segments based on their frequency

	Create a random selection or sample of segments

	Exclude segments based on a stoplist

	Convert XML tags to Orange Textable annotations

Text analysis

	Count unit frequency

	Count occurrences of smaller units in larger segments

	Count transition frequency between adjacent units

	Examine the evolution of unit frequency along the text

	Build a concordance

Table output

	Display table

	Export table

Import text from keyboard

Goal

Input text using keyboard for further processing with Orange Textable.

Ingredients

	Widget

	Text Field

	Icon

	[image: text_field_icon]

	Quantity

	1

Procedure

[image: Example usage of widget Text Field]

Figure 1: Importing a string using widget Text Field.

	Create an instance of Text Field on the canvas.

	Open its interface by double-clicking on the created instance.

	Type text in the text field at the top of the interface.

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation covering the input text is then available on the Text Field instance’s output connections; to display or export it,
see Cookbook: Text output.

See also

	Getting started: Keyboard input and segmentation display

	Reference: Text Field widget

	Cookbook: Text output

Import text from file

Goal

Import the content of one or more raw text files for further processing with
Orange Textable.

Ingredients

	Widget

	Text Files

	Icon

	[image: text_files_icon]

	Quantity

	1

Procedure

Single file

[image: Importing a file using the Text Files widget]

Figure 1: Importing the content of a file using the Text Files widget.

	Create an instance of Text Files on the canvas.

	Open its interface by double-clicking on the created instance.

	Make sure the Advanced settings checkbox is not selected.

	Click the Browse button to open the file selection dialog.

	Select the file you want to import and close the file selection dialog by
clicking Ok.

	In the Encoding drop-down menu, select the encoding that corresponds to
your file.

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation covering the file’s content is then available on the
Text Files instance’s output connections; to display or export it,
see Cookbook: Text output.

Multiple files

[image: Importing several files using the Text Files widget]

Figure 2: Importing the content of several files using the Text Files widget.

	Create an instance of Text Files on the canvas.

	Open its interface by double-clicking on the created instance.

	Make sure the Advanced settings checkbox is selected.

	If needed, empty the list of imported files by clicking the Clear all
button.

	Click the Browse button to open the file selection dialog.

	Select the first file you want to import. Select the encoding that corresponds to your file (if unknown, choose auto-detect in Encoding) .

	Click the Add button to add your first file to the list of imported files.

	Repeat steps 5 to 7 for adding all your files.

	Click the Send button (or make sure the Send automatically checkbox is selected).

	A segmentation containing a segment covering each imported file’s content
is then available on the Text Files instance’s output connections;
to display or export it, see Cookbook: Text output.

See also

	Reference: Text Files widget

	Cookbook: Text output

Import text from internet location

Goal

Import text content located at one or more URLs for further processing with
Orange Textable.

Ingredients

	Widget

	URLs

	Icon

	[image: urls_icon]

	Quantity

	1

Procedure

Single URL

[image: Importing text from an internet location using the URLs widget]

Figure 1: Importing text from an internet location using the URLs
widget.

	Create an instance of URLs on the canvas.

	Open its interface by double-clicking on the created instance.

	Make sure the Advanced settings checkbox is not selected.

	In the URL field, type the URL whose content you want to import
(including the http:// prefix).

	In the Encoding drop-down menu, select the encoding that corresponds to
this URL.

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation covering the URL’s content is then available on the
URLs instance’s output connections; to display or export it,
see Cookbook: Text output.

Multiple URLs

[image: Importing text from several internet locations using the URLs widget]

Figure 2: Importing text from several internet locations using the
URLs widget.

	Create an instance of URLs on the canvas.

	Open its interface by double-clicking on the created instance.

	Make sure the Advanced settings checkbox is selected.

	If needed, empty the list of imported URLs by clicking the Clear all
button.

	In the URL(s) field, enter the URLs you want to import (including the
http:// prefix), separated by the string ” / ” (space + slash +
space); make sure they all have the same encoding (you will be able to add
URLs that have other encodings later).

	In the Encoding drop-down menu, select the encoding that corresponds
to the set of selected URLs.

	Click the Add button to add the set of selected URLs to the list of
imported URLs.

	Repeat steps 5 to 7 for adding URLs in other encoding(s).

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation containing a segment covering each imported URL’s content
is then available on the URLs instance’s output connections; to
display or export it, see Cookbook: Text output.

See also

	Reference: URLs widget

	Cookbook: Text output

Display text content

Goal

Display the content of a text (segmentation).

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

	Widget

	Display

	Icon

	[image: display_icon]

	Quantity

	1

Procedure

[image: Viewing text with an instance of Display]

Figure 1: Viewing text with an instance of Display.

	Create an instance of Display on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that emits the segmentation to be displayed (e.g.
Text Field) to the Display instance’s input connection
(lefthand side).

	Open the Display instance’s interface by double-clicking on its
icon on the canvas to view the text content.

Comment

	If the input data consist of a large number of segments (thousands or more),
the time necessary to display them can be prohibitively long.

See also

	Getting started: Keyboard input and segmentation display

	Reference: Display widget

	Cookbook: Text input

	Cookbook: Segmentation manipulation

Export text content (and/or change text encoding)

Goal

Export the content of a text (segmentation).

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

	Widget

	Display

	Icon

	[image: display_icon]

	Quantity

	1

Procedure

[image: Export text with an instance of Display]

Figure 1: Export text with an instance of Display.

	Create an instance of Display on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that emits the segmentation to be displayed (e.g.
Text Field) to the Display instance’s input connection
(lefthand side).

	Open the Display instance’s interface by double-clicking on its
icon on the canvas to view the imported text.

	Tick the Advanced settings checkbox.

	In the Formatting section, tick the Apply custom formatting
checkbox.

	In the Export section, you can choose the encoding for the text that
will be exported using the File encoding drop-down menu.

	Click on Export to file button to open the file selection dialog.

	Select the location you want to export your file to and close the file
selection dialog by clicking on Ok.

Comment

	If you rather want to copy the text content in order to later paste it in
another program, click on Copy to clipboard; note that in this case,
the encoding is by default utf8 and cannot be changed.

	If the input data contains several texts (segments) you can specify a
string that will be inserted between each successive text in Segment
delimiter; note that the default segment delimiter \n represents a
carriage return.

	If the input data consist of a large number of segments (thousands or more),
the time necessary to display them can be prohibitively long.

See also

	Reference: Display widget

	Cookbook: Text input

	Cookbook: Segmentation manipulation

Convert text to lower or upper case

Goal

Convert text to lower or upper case.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

	Widget

	Preprocess

	Icon

	[image: preprocess_icon]

	Quantity

	1

Procedure

[image: Convert text to lower or upper case with an instance of Preprocess]

Figure 1: Convert text to lower or upper case with an instance of
Preprocess.

	Create an instance of Preprocess on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that emits the segmentation to be modified (e.g.
Text Field) to the Preprocess instance’s input connection
(lefthand side).

	Open the Preprocess instance’s interface by double-clicking on its
icon on the canvas.

	In the Processing section, tick the Transform case checkbox.

	Choose to lower or to upper in the drop-down menu on the right.

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation containing the modified text is then available on the
Preprocess instance’s output connections; to display or export it,
see Cookbook: Text output.

See also

	Reference: Preprocess widget

	Cookbook: Text input

	Cookbook: Segmentation manipulation

	Cookbook: Text output

Remove accents from text

Goal

Remove all accents from text.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

	Widget

	Preprocess

	Icon

	[image: preprocess_icon]

	Quantity

	1

Procedure

[image: Remove accents from text with an instance of Preprocess]

Figure 1: Remove accents from text with an instance of Preprocess.

	Create an instance of Preprocess on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that that emits the segmentation to be modified (e.g.
Text Field) to the Preprocess instance’s input connection
(lefthand side).

	Open the Preprocess instance’s interface by double-clicking on its
icon on the canvas.

	In the Processing section, tick the Remove accents checkbox.

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation containing the modified text is then available on the
Preprocess instance’s output connections; to display or export it,
see Cookbook: Text output.

See also

	Reference: Preprocess widget

	Cookbook: Text input

	Cookbook: Segmentation manipulation

	Cookbook: Text output

Replace all occurrences of a string/pattern

Goal

Replace all occurrences of a string (or pattern) in a text with another
string.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

	Widget

	Recode

	Icon

	[image: recode_icon]

	Quantity

	1

Procedure

[image: Replace all occurrences of a string with the Recode widget]

Figure 1: Replace all occurrences of a string with an instance of
Recode.

	Create an instance of Recode on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that emits the segmentation to be modified (e.g.
Text Field) to the Recode instance’s input connection
(lefthand side).

	Open the Recode instance’s interface by double-clicking on its
icon on the canvas.

	In the Substitution section, insert the string that will be replaced in
the Regex field.

	In the Replacement string field insert the replacement string.

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation containing the modified text is then available on the
Recode instance’s output connections; to display or export it,
see Cookbook: Text output.

Comment

	In the Regex field you can use all the syntax of Python’s regular
expression (cf. Python documentation [http://docs.python.org/library/re.html]).

	In our example, we choose to replace all occurrences of British -our with
American -or (for example, from colour to color); unless otherwise
specified (typically using word boundary “anchor” \b), replacements will
also occur within words, i.e. coloured to colored.

See also

	Reference: Recode widget

	Cookbook: Text input

	Cookbook: Segmentation manipulation

	Cookbook: Text output

Segment text in smaller units

Goal

Segment text in smaller units (e.g. lines, words, letters, etc.).

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

	Widget

	Segment

	Icon

	[image: segment_icon]

	Quantity

	1

Procedure

[image: Segment text in lines with an instance of Segment]

Figure 1: Segment text in lines with an instance of Segment.

	Create an instance of Segment on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that emits the segmentation to be segmented (e.g.
Text Field) to the Segment instance’s input connection
(lefthand side).

	Open the Segment instance’s interface by double-clicking on its
icon on the canvas.

	In the Regex section, insert the regular expression describing the
units that will be segmented (for example to segment a text in lines use
.+, in words \w+, in letters \w, in characters ., and so
on) then click on the validation button on the right.

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation containing a segment for each specified unit (e.g. line) is
then available on the Segment instance’s output connections; to
display or export it, see Cookbook: Text output.

Comment

	In the Regex field you can use all the syntax of Python’s regular
expression (cf. Python documentation [http://docs.python.org/library/re.html]).

See also

	Getting started: Segmenting data into smaller units

	Reference: Segment widget

	Cookbook: Text input

	Cookbook: Segmentation manipulation

	Cookbook: Text output

Merge several texts

Goal

Merge several texts together so they can be further processed as a whole.

Prerequisites

Two or more text have been imported in Orange Textable (see Cookbook:
Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

	Widget

	Merge

	Icon

	[image: merge_icon]

	Quantity

	1

Procedure

[image: Merge several texts with an instance of Merge]

Figure 1: Merge several texts with an instance of Merge

	Create an instance of Merge on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instances that emit the segmentations to be merged together (e.g. two
instances of Text Field) to the Merge instance’s input
connection (lefthand side).

	Open the Merge widget instance’s interface by double-clicking on its
icon on the canvas.

	All input data appear in the Ordering section; you can change their
ordering by selecting a line and clicking on Move Up or Move
Down.

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation containing all input data merged together is then available
on the Merge instance’s output connections; to display or export
it, see Cookbook: Text output.

See also

	Getting started: Merging segmentations together

	Reference: Merge widget

	Cookbook: Text input

	Cookbook: Segmentation manipulation

	Cookbook: Text output

Include/exclude segments based on a pattern

Goal

Include or exclude segments from a segmentation using a regular expression

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and in all likelihood it has been segmented
in smaller units (see Cookbook: Segment text in smaller units).

Ingredients

	Widget

	Select

	Icon

	[image: select_icon]

	Quantity

	1

Procedure

[image: Include or exclude units based on a pattern with an instance of Select]

Figure 1: Using the Select widget to include/exclude segments
from a segmentation based on a regular expression

	Create an instance of Select on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that emits the segmentation to be filtered (e.g. an instance of
Segment) to the Select instance’s input connection (lefthand
side).

	Open the Select instance’s interface by double-clicking on its
icon on the canvas.

	In the Select section, choose either Mode: Include or
Exclude.

	In the Regex field, insert the pattern that will select the units to
be included or excluded, such as the single letter e in our example.

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation containing the selected segments is then available on the
Select instance’s output connections; to display or export it, see
Cookbook: Text output.

Comment

	In the Regex field you can use all the syntax of Python’s regular
expression (cf. Python documentation [http://docs.python.org/library/re.html]).

	The Select widget emits on a second output connection (not selected
by default) a segmentation containing the segments that were not selected.

See also

	Getting started: Partitioning segmentations

	Reference: Select widget

	Cookbook: Text input

	Cookbook: Segment text in smaller units

	Cookbook: Text output

Filter segments based on their frequency

Goal

Filter out the most rare and/or frequent segments of a segmentation.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and in all likelihood it has been segmented
in smaller units (see Cookbook: Segment text in smaller units).

Ingredients

	Widget

	Select

	Icon

	[image: select_icon]

	Quantity

	1

Procedure

[image: Filtering out low-frequency segments with an instance of Select]

Figure 1: Filtering out low-frequency segments with an instance of
Select

	Create an instance of Select on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that emits the segmentation to be filtered (e.g. an instance of
Segment) to the Select instance’s input connection (lefthand
side).

	Open the Select instance’s interface by double-clicking on its
icon on the canvas.

	Tick the Advanced settings checkbox.

	In the Select section, choose Threshold in the Method drop-down
menu.

	Under Threshold expressed as, choose whether you want to express
frequency thresholds in terms of Count (i.e. number of tokens) or of
Proportion (i.e. percentage of tokens).

	If you want to set a minimum frequency threshold, tick the Min. count
(respectively Min. proportion (%)) checkbox and indicate the minimum
frequency that a segment type must have in order to be included in the
output.

	If you want to set a maximum frequency threshold, tick the Max. count
(respectively Max. proportion (%)) checkbox and indicate the maximum
frequency that a segment type can have in order to be included in the
output.

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation containing the selected segments is then available on the
Select instance’s output connections; to display or export it, see
Cookbook: Text output.

Comment

	The Select widget emits on a second output connection (not selected
by default) a segmentation containing the segments that were not selected.

See also

	Reference: Select widget

	Cookbook: Text input

	Cookbook: Segment text in smaller units

	Cookbook: Text output

Create a random selection or sample of segments

Goal

Create a random sample of segments.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and in all likelihood it has been segmented
in smaller units (see Cookbook: Segment text in smaller units).

Ingredients

	Widget

	Select

	Icon

	[image: select_icon]

	Quantity

	1

Procedure

[image: Create a random selection or sample of segments with an instance of Select]

Figure 1: Create a random selection or sample of segments with an instance
of Select

	Create an instance of Select on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that emits the segmentation to be sampled (e.g. an instance of
Segment) to the Select instance’s input connection (lefthand
side).

	Open the Select instance’s interface by double-clicking on its
icon on the canvas.

	Tick the Advanced settings checkbox.

	In the Select section, choose the Method: Sample.

	Under Sample size expressed as, choose whether you want to express
sample size in terms of Count (i.e. number of tokens) or of
Proportion (i.e. percentage of tokens).

	In the Sample size control, choose the number of segments that will be
randomly sampled (respectively, choose the percentage of segments in the
Sampling rate (%) control).

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation containing the sampled segments is then available on the
Select instance’s output connections; to display or export it, see
Cookbook: Text output.

Comment

	The Select widget emits on a second output connection (not selected
by default) a segmentation containing the segments that were not selected.

See also

	Reference: Select widget

	Cookbook: Text input

	Cookbook: Segment text in smaller units

	Cookbook: Text output

Exclude segments based on a stoplist

Goal

Filter out segments based on a stoplist.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and it has been segmented into words (see
Cookbook: Segment text in smaller units).

Ingredients

	Widget

	Text Field

	Segment

	Intersect

	Icon

	[image: textfield_icon]

	[image: segment_icon]

	[image: intersect_icon]

	Quantity

	1

	1

	1

Procedure

[image: Exclude segments based on a stoplist with instances of Text Field, Segment and Intersect]

Figure 1: Exclude segments based on a stoplist with instances of
Text Field, Segment and Intersect

	Create an instance of Text Field on the canvas and paste into it
the stoplist you want to use.

	Follow the indications given in Cookbook: Segment text in smaller
units in order to segment the stoplist into words; in what
follows, it is assumed that the label of the resulting segmentation is
stop words.

	Create an instance of Intersect on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that emits the segmentation to be filtered (here the top instance
of Segment) to the Intersect instance’s input connection
(lefthand side).

	Likewise, connect the Segment instance that emits the stop words
segmentation to the Intersect instance.

	Open the Intersect instance’s interface by double-clicking on its
icon on the canvas.

	In the Intersect section, choose Mode: Exclude.

	In the Source segmentation field, choose the label of the word
segmentation to be filtered (here: words); in the Filter segmentation
field, choose the label the segmentation containing the stopwords (here:
stop words).

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation containing the filtered segmentation is then available on
the Intersect instance’s output connections; to display or export
it, see Cookbook: Text output.

Comment

	Stopword lists for various languages can be found here [http://members.unine.ch/jacques.savoy/clef/].

See also

	Getting started: Using a segmentation to filter another

	Reference: Intersect widget

	Cookbook: Text input

	Cookbook: Segment text in smaller units

	Cookbook: Text output

Convert XML tags into Orange Textable annotations

Goal

Convert XML markup into Orange Textable data structures such as segments and
their annotations.

Prerequisites

Some text containing XML markup has been imported in Orange Textable (see
Cookbook: Text input) and possibly
further processed (see Cookbook: Segmentation manipulation).

Ingredients

	Widget

	Extract XML

	Icon

	[image: extract_xml_icon]

	Quantity

	1

Procedure

[image: Convert XML tags into Orange Textable annotations with an instance of Extract XML]

Figure 1: Convert XML tags into Orange Textable annotations with an
instance of Extract XML

	Create an instance of Extract XML on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that emits the data containing XML markup (e.g. Text Field)
to the Extract XML widget instance’s input connection (lefthand
side).

	Open the Extract XML instance’s interface by double-clicking on its
icon on the canvas.

	In the XML Extraction section, insert the desired XML element
(here w).

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	A segmentation containing a segment for each occurrence of the specified
tag is then available on the Segment instance’s output connections;
to display or export it, see Cookbook: Text output.

Comment

	The XML tags that have been retrieved are actually discarded from the
resulting segmentation: only their content is included in the output.

	The attributes of the XML tags are automatically converted to annotations
associated with the created segments.

	Note that it is only possible to extract instances of a single XML element
type at a time (here w).

	However, it is possible to chain several Extract XML instances in
order to successively extract instances of different XML elements. For
example, a first instance to extract div type elements, a second to
extract w type elements, and so on. In this case, it is important to
make sure that the Remove markup option is not selected.

See also

	Getting started: Converting XML markup to annotations

	Reference: Extract XML widget

	Cookbook: Text input

	Cookbook: Segmentation manipulation

	Cookbook: Text output

Count unit frequency

Goal

Count the frequency of each segment type that appears in a segmentation.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and it has been segmented in smaller units
(see Cookbook: Segment text in smaller units).

Ingredients

	Widget

	Count

	Icon

	[image: count_icon]

	Quantity

	1

Procedure

[image: Count unit frequency globally with an instance of Count]

Figure 1: Count unit frequency globally with an instance of Count.

	Create an instance of Count on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that emits the segments that will be counted (e.g. Segment)
to the Count widget instance’s input connection (lefthand side).

	Open the Count instance’s interface by double-clicking on its
icon on the canvas.

	In the Units section, select the segmentation containing units to be
counted in the Segmentation drop-down menu (here: letters).

	Click the Compute button (or make sure the Compute automatically
checkbox is selected).

	A table showing the results is then available at the output connection of
the Count instance; to display or export it, see Cookbook:
Table output.

Comment

	The total number of segments in your segmentation appears in the Info
section (here: 14).

	It is also possible to define units as segment pairs (bigrams), triples
(trigrams), and so on, by increasing the Sequence length parameter in
the Units section.

	If Sequence length is set to a value greater than 1, the string
appearing in the Intra-sequence delimiter field will be inserted between
the elements composing each n-gram in the column headers, which can
enhance their readability. The default is # but you can change it by
inserting the delimiter of your choice.

See also

	Getting started: Counting segment types

	Reference: Count widget

	Cookbook: Text input

	Cookbook: Segment text in smaller units

	Cookbook: Table output

Count occurrences of smaller units in larger segments

Goal

Count the occurrences of smaller units (for instance letters) in larger
segments (for instance words), and report the results by means of a
two-dimensional contingency table (e.g. with words in rows and letters in
columns).

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and it has been segmented in at least two
hierarchical levels, e.g. words and letters (see Cookbook: Segment text
in smaller units).

Ingredients

	Widget

	Count

	Icon

	[image: count_icon]

	Quantity

	1

Procedure

[image: Count occurrences of a smaller units in larger segments with an instance of Count]

Figure 1: Count occurrences of smaller units in larger segments with an
instance of Count

	Create an instance of Count on the canvas.

	Drag and drop from the output connection (righthand side) of both widget
instances that have been used to segment the text
(here the two instances of Segment) to the Count widget
instance’s input connection (lefthand side), thus forming a triangle.

	Open the Count instance’s interface by double-clicking on its
icon on the canvas.

	In the Units section, select the segmentation into smaller units (here:
letters).

	In the Context section, choose Mode: Containing segmentation.

	In the Segmentation field, select the context segmentation, i.e. the
segmentation into larger segments (here words).

	Click the Compute button (or make sure the Compute automatically
checkbox is selected).

	A table showing the results is then available at the output connection of
the Count instance; to display or export it, see Cookbook:
Table output.

Comment

	The total number of segments in your segmentation appears in the Info
section (here: 14).

	It is also possible to define units as segment pairs (bigrams), triples
(trigrams), and so on, by increasing the Sequence length parameter in
the Units section.

	If Sequence length is set to a value greater than 1, the string
appearing in the Intra-sequence delimiter field will be inserted between
the elements composing each n-gram in the column headers, which can
enhance their readability. The default is # but you can change it by
inserting the delimiter of your choice.

See also

	Getting started: Counting in specific contexts

	Reference: Count widget

	Cookbook: Text input

	Cookbook: Segment text in smaller units

	Cookbook: Table output

Count transition frequency between adjacent units

Goal

Count the frequency of transitions between adjacent segment types in a text.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and it has been segmented in smaller units
(see Cookbook: Segment text in smaller units).

Ingredients

	Widget

	Count

	Icon

	[image: count_icon]

	Quantity

	1

Procedure

[image: Count frequency of adjacent contexts with an instance of Count]

Figure 1: Count transition frequency with an instance of Count

	Create an instance of Count on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that has been used to segment the text (e.g. Segment) to
the Count widget instance’s input connection (lefthand side).

	Open the Count instance’s interface by double-clicking on its
icon on the canvas.

	In the Units section, select the segmentation in which transitions
between units will be counted.

	In the Context section, choose Mode: Left-right neighborhood.

	Select Left context size: 1 and Right context size: 0.

	Click the Compute button (or make sure the Compute automatically
checkbox is selected).

	A table showing the results is then available at the output connection of
the Count instance; to display or export it, see Cookbook:
Table output.

Comment

	It is also possible to define units as segment pairs (bigrams), triples
(trigrams), and so on, by increasing the Sequence length parameter in
the Units section.

	If Sequence length is set to a value greater than 1, the string
appearing in the Intra-sequence delimiter field will be inserted between
the elements composing each n-gram in the column headers, which can
enhance their readability. The default is # but you can change it by
inserting the delimiter of your choice.

	Furthermore, it is possible to count the apparition of units in more complex
contexts than simply the previous unit, such as: the n previous units
(Left context size); the n following units (Right context size);
or any combination of both.

	The Unit position marker is a string that indicates the separation
between left and right contexts sides. The default is _ but you can
change it by inserting the marker of your choice.

See also

	Reference: Count widget

	Cookbook: Text input

	Cookbook: Segment text in smaller units

	Cookbook: Table output

Examine the evolution of unit frequency along the text

Goal

Examine how the frequency of segment types evolves from the beginning to the
end of a segmentation.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and it has been segmented in smaller units
(see Cookbook: Segment text in smaller units).

Ingredients

	Widget

	Count

	Icon

	[image: count_icon]

	Quantity

	1

Procedure

[image: Examine the evolution of unit frequency with an instance of Count]

Figure 1: Examine the evolution of unit frequency with an instance of
Count

	Create an instance of Count on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that has been used to segment the text (e.g. Segment) to
the Count widget instance’s input connection (lefthand side).

	Open the Count instance’s interface by double-clicking on its
icon on the canvas.

	In the Units section, select the segmentation whose units will be
counted.

	In the Context section, choose Mode: Sliding window.

	Set the Window size parameter to the desired value; with the minimum
value of 1, frequency will be counted separately at every successive
position in the segmentation, whereas a larger value n > 1 will have the
effect that frequency will be counted in larger and partially overlapping
spans (segments 1 to n, then 2 to n + 1, and so on), resulting in a
smoother curve.

	Click the Compute button (or make sure the Compute automatically
checkbox is selected).

	A table showing the results is then available at the output connection of
the Count instance; to display or export it, see Cookbook:
Table output.

Comment

	It is also possible to define units as segment pairs (bigrams), triples
(trigrams), and so on, by increasing the Sequence length parameter in
the Units section.

	If Sequence length is set to a value greater than 1, the string
appearing in the Intra-sequence delimiter field will be inserted between
the elements composing each n-gram in the column headers, which can
enhance their readability. The default is # but you can change it by
inserting the delimiter of your choice.

See also

	Reference: Count widget

	Cookbook: Segment text

	Cookbook: Display table

Build a concordance

Goal

Build a concordance to examine the context of occurrence of a given string.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation).

Ingredients

	Widget

	Segment

	Context

	Icon

	[image: segment_icon]

	[image: context_icon]

	Quantity

	1

	1

Procedure

[image: Widgets used to build a concordance and their interfaces]

Figure 1: Widgets used build a concordance and their interfaces

	Create an instance of Segment and an instance of Context on
the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that emits the segmentation in which occurrences of the query
string will be retrieved (e.g. Text Field) to the Segment
widget instance’s input connection (lefthand side).

	Also connect both the Text Field instance and the Segment
instance to the Context instance (thus forming a triangle).

	Open the Segment instance’s interface by double-clicking on its
icon on the canvas and type the string whose context of occurrence will be
examined in the Regex field (here: hobbit); assign it a
recognizable Output segmentation label, such as key_segments for
instance.

	Click the Send button (or make sure the Send automatically
checkbox is selected).

	Open the Context instance’s interface by double-clicking on its
icon on the canvas.

	In the Units section, select the segmentation that contains the
occurrences of the query string (here: key_segments) using the
Segmentation drop-down menu.

	In the Contexts section, choose Mode: Containing segmentation
and select the segmentation that contains the original text (here:
text_string, as emitted by the Text Field instance) using the
Segmentation drop-down menu.

	Tick the Max. length checkbox and set the maximum number of characters
that should be displayed on either side of each occurrence of the query
string.

	Click the Compute button (or make sure the Compute automatically
checkbox is selected).

	A table showing the results is then available at the output connection of
the Count instance; to display or export it, see Cookbook:
Table output.

Comment

	In the Regex field of the Segment widget you can use all the
syntax of Python’s regular expression (cf. Python documentation [http://docs.python.org/library/re.html]); for instance, if you wish to
restrict your search to entire words, you might frame the query string with
word boundary anchors \b (in our example \bhobbit\b).

See also

	Reference: Segment widget

	Reference: Context widget

	Cookbook: Text input

	Cookbook: Segmentation manipulation

	Cookbook: Table output

Display table

Goal

Display an Orange Textable table.

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation). A table has been created by
means of one of Orange Textable’s table construction widgets (see Cookbook: Text analysis).

Ingredients

	Widget

	Convert

	Data Table

	Icon

	[image: convert_icon]

	[image: datatable_icon]

	Quantity

	1

	1

Procedure

[image: Convert to table format with an instance of Convert and Data Table]

Figure 1: Display an Orange Textable table with instances of
Convert and Data Table.

	Create an instance of Convert and Data Table on the canvas (the
latter is found in the Data tab of Orange Canvas).

	Drag and drop from the output connection (righthand side) of the widget
instance that has been used to build a table (e.g. Context) to the
Convert widget instance’s input connection (lefthand side).

	Connect the Convert instance to the Data Table instance.

	Open the Data Table instance’s interface by double-clicking on its
icon on the canvas to display the table.

Comment

	If the table is a frequency table, you may want to change its default
orientation of the table to make it easier to read. To that effect, open the
Convert instance’s interface, tick the Advanced settings
checkbox, and in the Transform section, tick the transpose checkbox.

[image: Change the orientation of Orange Textable table using Convert]

Figure 2: Change the orientation of an Orange Textable frequency table
using an instance of Convert.

See also

	Getting started: Converting between table formats

	Reference: Convert widget

	Reference: Table construction widgets

	Cookbook: Text input

	Cookbook: Segmentation manipulation

	Cookbook: Text analysis

Export table

Goal

Export an Orange Textable table in a text file in order to later import it in
another program (e.g. spreadsheet software).

Prerequisites

Some text has been imported in Orange Textable (see Cookbook: Text input) and possibly further processed (see
Cookbook: Segmentation manipulation). A table has been created by
means of one of Orange Textable’s table construction widgets (see Cookbook: Text analysis).

Ingredients

	Widget

	Convert

	Icon

	[image: convert_icon]

	Quantity

	1

Procedure

[image: Export table with an instance of Convert]

Figure 1: Export table with an instance of Convert

	Create an instance of Convert on the canvas.

	Drag and drop from the output connection (righthand side) of the widget
instance that has been used to build a table (e.g. Context) to the
Convert widget instance’s input connection (lefthand side).

	Open the Convert instance’s interface by double-clicking on its
icon on the canvas.

	Select the desired encoding for the exported data (e.g. utf8).

	Click the Export to file button to open the file selection dialog.

	Select the location you want to export your file to and close the file
selection dialog by clicking on Ok.

Comment

	If you rather want to copy the text content in order to later paste it in
another program, click on Copy to clipboard; note that in this case,
the encoding is by default utf8 and cannot be changed.

	The default column delimiter is \t but this can be modified to either
comma (,) or semi-colon (;) by ticking the Advanced settings
checkbox in the Convert instance’s interface, then selecting the
desired delimiter in the Column delimiter drop-down menu (Export
section).

See also

	Reference: Convert widget

	Reference: Table construction widgets

	Cookbook: Text input

	Cookbook: Segmentation manipulation

	Cookbook: Text analysis

Case studies

This section aims to provide a repository of use cases illustrating the
application of Orange Textable to realistic text analysis problems. The focus
here is not so much on “how to” as it is on “why”. Each case study comes with
a downloadable Orange Textable scheme that can be studied interactively and
adapted to the specific needs of the user.

	Term frequency comparison in Melville's Moby Dick

	Stylometric analysis of Shakespeare's Titus Andronicus

Term frequency comparison in Melville’s Moby Dick

(This use case was designed with the help of Douglas Duhaime [http://douglasduhaime.com/] and the following text was slightly adapted from
a description kindly contributed by him.)

This case study is adapted from Matthew Jocker’s excellent work Text Analysis
with R for Students of Literature (46). The goal here is to visualize the
frequency of the terms “Ahab” and “whale(s)” within Herman Melville’s
masterpiece Moby Dick. The workflow reproduced on figure 1 below retrieves the text from Project
Gutenberg [https://www.gutenberg.org/], splits the work into its constitutive
chapters, and measures the degree to which each of the target terms appears in
each chapter. 1

[image: Orange Textable workflow for the Moby Dick use case]

Figure 1: Orange Textable workflow for visualizing term frequency in Moby Dick.

Clicking on the Scatter Plot instance, one can easily see the relative
frequency of the term whale(s) in each chapter of Melville’s novel (see
figure 2 below). By toggling the Y-axis
Attribute dropdown box, one can select Ahab and visualize the frequency of
Ahab in the novel.

[image: Relative frequency of term "whale(s)" in Moby Dick]

[image: Relative frequency of term "Ahab" in Moby Dick]

Figure 2: Negative correlation between the relative frequency of terms whale(s) (top) and Ahab (bottom) in Melville’s novel.

Although one might have supposed that the distribution of Captain Ahab would
closely resemble that of whales within the novel, the plots above tell a
different story. While Ahab is most present in early and then later chapters,
whales are most present in the novel’s middle chapters, creating something of
an inverse relationship between the two. For the literary critic, this
relationship offers new evidence with which to evaluate the strategy and
structure of Melville’s novel.

	1

	The schema can be downloaded from here.

Stylometric analysis of Shakespeare’s Titus Andronicus

(This use case was designed with the help of Douglas Duhaime [http://douglasduhaime.com/] and the following text was slightly adapted from
a description kindly contributed by him.)

This is a case study in “stylometry”, or the quantitative analysis of a
writer’s style. The data to be analyzed is William Shakespeare’s play Titus
Andronicus, which scholars have long believed William Shakespeare did not
write alone. Since the publication of John Robertson’s study Did Shakespeare
Write Titus Andronicus, many have believed that particular scenes within the
text have been written by other playwrights of the time: many believe that Act
1 Scene 1, for instance, was written by Shakespeare’s contemporary George
Peele.

In order to test this hypothesis, the following Orange Textable workflow
measures the degree to which the language in each scene within Titus
Andronicus resembles the language within each other scene (figure 1 below). 1 By changing the Mode parameter
within the Intersect instance, one can elect to focus only on content words
or stopwords, and by changing the Distance Metrics parameter within the
Example Distance isntance, one can change the similarity metric for the
language comparison. Finally, by clicking on the Distance Map icon within
this workflow, one can see at a glance how distinct the vocabulary within each
scene is.

[image: Orange Textable workflow for the Titus Andronicus use case]

Figure 1: Orange Textable workflow for the stylometric analysis of Titus Andronicus*.

Comparing the stopwords within each scene using a normalized Euclidean distance
metric, one finds that Act 1 Scene 1 is indeed a significant outlier within
Titus Andronicus. The scene remains an outlier when one performs TF-IDF
normalization on the term-document matrix (within the Convert instance),
and when one uses a normalized Manhattan distance metric. Iterating through
each of the various distance metrics, and toggling between different
normalization metrics, Act 1 Scene 1 remains the most consistent outlier. This
adds further evidence to the argument that the scene’s stylistic fingerprint
departs from that of that of the rest of the play.

[image: Act 1 Scene 1 of Titus Andronicus is a consistent stylistic outlier.]

Figure 2: Act 1 Scene 1 is a consistent stylistic outlier in Shakespeare’s play.

	1

	The schema can be downloaded from here.

Reference

This part of the documentation explains the effect of every control of each
Orange Textable widget. Widgets making up Orange Textable are grouped
into 4 main categories based on the type of functionality they offer. A
section of this part of the documentation covers each such category. The
last section documents the details of JSON formats that can be used for the
configuration of some of Orange Textable’s widgets.

	Text import widgets
	Text Field

	Text Files

	URLs

	Segmentation processing widgets
	Preprocess

	Recode

	Merge

	Segment

	Select

	Intersect

	Extract XML

	Display

	Table construction widgets
	Count

	Length

	Variety

	Cooccurrence

	Context

	Category

	Conversion/export widgets
	Convert

	Message

	JSON im-/export format
	Generalities

	File list

	URL list

	Substitution list

	Regular expression list

Text import widgets

The common purpose of widgets of this category is to import text data in
Orange Canvas, either from the keyboard (Text Field), from files
(Text Files), or from the Internet (URLs). They all emit
Segmentation data.

	Text Field

	Text Files

	URLs

Text Field

[image: _images/TextField_54.png]
Import text data from keyboard input.

Signals

Inputs:

	Text data

Segmentation containing text to be edited

Outputs:

	Text data

Segmentation covering the input text

Description

This widget allows the user to import keyboard collected data. It emits a
segmentation containing a single unannoted segment covering the whole string.
Secondarily, Text Field can be used to manually edit a previously imported
string.

The interface of the widget is divided in two zones (see figure 1 below). The upper part is a text field editable by the
user. The standard editing functions (copy, paste, cancel, etc.) are
accessible through a right-click on the field.

[image: Interface of the Text field widget]

Figure 1: Interface of the Text field widget.

The Field section allows the user to copy or manually edit texts. The text can be segmented using a character.

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface (editing of the text or
label modification).

It should be noted that the text field’s content is normalized in three ways:

	it is systematically converted to Unicode

	it is subjected to the canonical Unicode decomposition-recomposition [http://unicode.org/reports/tr15] technique (Unicode sequences such as
LATIN SMALL LETTER C (U+0063) + COMBINING CEDILLA (U+0327) are
systematically replaced by the combined equivalent, e.g. LATIN SMALL LETTER
C WITH CEDILLA (U+00C7))

	various forms of line endings (in particular \r\n and \r) are
converted to a single form (namely \n)

When an instance of Text Field receives a segmentation on an incoming
connection, the contents of all incoming segments are concatenated (without
adding any delimiters) and the resulting string replaces the current textual
content of the widget (if any). This allows the user to manually edit text
that has been previously imported in Orange Textable. Some points are worth
noting:

	This operation creates a distinct string from the one that has been
previously imported: it really amounts to copying the original string and
making the copy available for manual edition. As such, it is prone to a very
specific and possibly disconcerting type of error, which can be best
understood by studying the example given in the documentation of
Preprocess (section Caveat), where what is said
about Preprocess also applies to Text Field.

	Modifications brought from within the interface of Text Field to a
string imported in this way will be lost if the Text Field instance
receives a new input on its incoming connection. In particular, this will
happen if the schema is saved and later re-opened. To avoid any loss of
data, the safest way to operate is to remove the incoming connection
as soon as it has been created and the string has been copied in the
Text Field instance’s interface; indeed, removing the incoming
connection will not remove the imported string from the instance’s
interface, where it can then be edited without risking to overwrite it.

Messages

Information

	Data correctly sent to output: 1 segment (<n> characters).

	This confirms that the widget has operated properly.

	No data sent to output yet: text field is empty.

	The widget instance is not able to emit data to output because no text has
been entered in the text field.

Examples

	Getting started: Keyboard input and segmentation display

	Cookbook: Import text from keyboard

See also

	Getting started: Merging segmentations together

	Getting started: Annotating by merging

	Getting started: Converting XML markup to annotations

	Reference: Preprocess (section “Caveat”)

Text Files

[image: _images/TextFiles_54.png]
Import data from raw text files.

Signals

Inputs:

	Message

JSON Message controlling the list of imported text files

Outputs:

	Text data

Segmentation covering the content of imported text files

Description

This widget is designed to import the contents of one or several text files in
Orange Canvas. It outputs a segmentation containing a (potentially annotated)
segment for each imported file. The imported textual content is normalized in
several ways:

	it is systematically converted to Unicode (from the encoding defined by the
user)

	it is subjected to the canonical Unicode decomposition-recomposition [http://unicode.org/reports/tr15] technique (Unicode sequences such as
LATIN SMALL LETTER C (U+0063) + COMBINING CEDILLA (U+0327) are
systematically replaced by the combined equivalent, e.g. LATIN SMALL LETTER
C WITH CEDILLA (U+00C7))

	it is stripped from the utf8 byte-order mark [https://en.wikipedia.org/wiki/Byte_order_mark#UTF-8] (if any)

	various forms of line endings (in particular \r\n and \r) are
converted to a single form (namely \n)

The interface of Text files is available in two versions, according to
whether or not the Advanced Settings checkbox is selected.

Basic interface

In its basic version (see figure 1 below), the Text
Files widget is limited to the import of a single file. The interface
contains a Source section enabling the user to select the input file. The
Browse button opens a file selection dialog; the selected file then
appears in the File path text field (it can also be directly inputted with
the keyboard). The Encoding drop-down menu enables the user to specify the
encoding of the file.

[image: Basic interface of the Text files widget]

Figure 1: Text files widget (basic interface).

The user can define the label of the output segmentation (Options) by checking the Advanced settings.

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface.

The text below the Send button indicates the number of characters in the single
segment contained in the output segmentation, or the reasons why no
segmentation is emitted (no input data, encoding issue, etc.).

Advanced interface

The advanced version of Text Files allows the user to import several files
in a determined order; each file can moreover be associated to a distinct
encoding and specific annotations. The emitted segmentation contains a segment
for each imported file.

[image: Advanced interface of the Text files widget]

Figure 2: Text files widget (advanced interface).

The advanced interface (see figure 2 above) presents
similarities with that of the URLs, Recode, and Segment
widgets. The Sources section allows the user to select the input
file(s) as well as their encoding, to determine the order in which they appear
in the output segmentation, and optionally to assign an annotation. The list
of imported files appears at the top of the window; the columns of this list
indicate (a) the name of each file, (b) the corresponding annotation (if any),
and (c) the encoding with which each is associated.

In figure 2, we can see that two files are imported
and that each is provided with an annotation whose key is author. The first
file associates value Dickens with this key and is encoded in utf-8; the
second one has value Fitzgerald and is encoded in iso-8859-1.

The first buttons on the right of the imported files’ list enable the user to
modify the order in which they appear in the output segmentation (Move Up
and Move Down), to delete a file from the list (Remove) or to
completely empty it (Clear All). Except for Clear All, all these
buttons require the user to previously select an entry from the list. Import
List enables the user to import a file list in JSON format (see
JSON im-/export format, File list) and to add it to the previously selected sources. In the
opposite Export List enables the user to export the source list in a JSON
file.

The remainder of the Sources section allows the user to add new files to
the list. The easiest way to do so is to first click on the Browse button,
which opens a file selection dialog. After having selected one or more files
in this dialog and validated the choice by clicking on Open, the files
appear in the File paths field and can be added to the list by clicking on
the Add button. It is also possible to type the complete paths of the
files directly in the text field, separating the paths corresponding to the
successive files with the string ” ” (space + slash + space).

Before adding one or more files to the list by clicking on Add, it is
possible to select their encoding (Encoding), and to assign an annotation
by specifying its key in the Annotation key field and the corresponding
value in the Annotation value field. These three parameters (encoding,
key, value) will be applied to each file appearing in the File paths field
at the moment of their addition to the list with Add.

The Options section allows the user to specify the label affected to the
output segmentation. The Import filenames with key checkbox enables the program to create for each imported file an
annotation whose value is the file name (as displayed in the list) and whose
key is specified by the user in the text field on the right of the checkbox.
Similarly the button Auto-number with key enables the program to
automatically number the imported files and to associate the number to the
annotation key specified in the text field on the right.

In figure 2, it was thus decided to assign the label
novels to the output segmentation, and to associate the name of each file to
the annotation key filename. On the other hand, the auto-numbering option
has not been enabled.

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface.

The text below the Send button indicates the length of the output segmentation in
characters, or the reasons why no segmentation is emitted (no selected file,
encoding issue, etc.). In the example, the two segments corresponding to the
imported files thus total up to 1’262’145 characters.

Remote control

Text Files is one the widgets that can be controlled by means of the
Message widget. Indeed, it can receive in input a message consisting
of a file list in JSON format (see JSON im-/export format, File list), in which case the list
of files specified in this message replaces previously imported sources (if
any). Note that removing the incoming connection from the Message instance
will not, by itself, remove the list of files imported in this way from the
Text Files instance’s interface; conversely, this list of files can be
modified using buttons Move up/down, Remove, etc. even if the incoming
connection from the Message instance has not been removed. Finally, note
that if a Text Files instance has the basic version of its interface
activated when an incoming connection is created from an instance of
Message, it automatically switches to the advanced interface.

Messages

Information

	Data correctly sent to output: <n> segments (<m> characters).

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically checkbox
has not been selected, so the user is prompted to click the Send
button (or equivalently check the box) in order for computation and data
emission to proceed.

	No data sent to output yet: no file selected.

	The widget instance is not able to emit data to output because no input
file has been selected.

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings and Errors below).

Warnings

	No label was provided.

	A label must be entered in the Output segmentation label field in
order for computation and data emission to proceed.

	No annotation key was provided for auto-numbering.

	The Auto-number with key checkbox has been selected and an annotation
key must be specified in the text field on the right in order for
computation and data emission to proceed.

	JSON message on input connection doesn’t have the right keys and/or values.

	The widget instance has received a JSON message on its Message input
channel and the keys and/or values specified in this message do not match
those that are expected for this particular widget type (see JSON
im-/export format, File list).

	JSON parsing error.

	The widget instance has received data on its Message input channel and
the data couldn’t be correctly parsed. Please use a JSON validator to
check the data’s well-formedness.

Errors

	Couldn’t open file or Couldn’t open file ‘<filepath>’.

	A file couldn’t be opened and read, typically because the specified path
is wrong.

	Encoding error or Encoding error: file ‘<filepath>’.

	A file couldn’t be read with the specified encoding (it must be in another
encoding).

Examples

	Cookbook: Import text from file

See also

	Reference: JSON im-/export format, File list

	Reference: Message widget

URLs

[image: _images/URLs_54.png]
Fetch text data from internet locations.

Signals

Inputs:

	Message

JSON Message controlling the list of imported URLs

Outputs:

	Text data

Segmentation covering the content of imported URLs

Description

This widget is designed to import the contents of one or several internet
locations (URLs) in Orange Canvas. It outputs a segmentation containing a
potentially annotated) segment for the content of each selected URL. The
imported textual content is normalized in several ways:

	it is systematically converted to Unicode (from the encoding defined by the
user)

	it is subjected to the canonical Unicode decomposition-recomposition [http://unicode.org/reports/tr15] technique (Unicode sequences such as
LATIN SMALL LETTER C (U+0063) + COMBINING CEDILLA (U+0327) are
systematically replaced by the combined equivalent, e.g. LATIN SMALL LETTER
C WITH CEDILLA (U+00C7))

	it is stripped from the utf8 byte-order mark [https://en.wikipedia.org/wiki/Byte_order_mark#UTF-8] (if any)

	various forms of line endings (in particular \r\n and \r) are
converted to a single form (namely \n)

The interface of URLs is available in two versions, according to whether or
not the Advanced Settings checkbox is selected.

Basic interface

In its basic version (see figure 1 below), the URLs
widget is limited to the import of a single URL’s content. The interface
contains a Source section enabling the user to type the input URL and to
select the encoding of its content.

[image: Basic interface of the URLs widget]

Figure 1: URLs widget (basic interface).

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface.

Below the Send button, the user finds the number of characters in the single
segment contained in the output segmentation, or the reasons why no
segmentation is emitted (inability to retrieve the data, encoding issue,
etc.).

Advanced interface

The advanced version of URLs allows the user to import the content of
several URLs in a determined order; each URL can moreover be associated to a
distinct encoding and specific annotations. The emitted segmentation contains
a segment for the content of each imported URL.

[image: Advanced interface of the URLs widget]

Figure 2: URLs widget (advanced interface).

The advanced interface (see figure 2 above) presents
similarities with that of the Text Files, Recode, and
Segment widgets. The Sources section allows the user to specify
the imported URL(s) as well as their content’s encoding, to determine the
order in which they appear in the output segmentation, and optionally to
assign an annotation. The list of imported URLs appears at the top of the
window; the columns of this list indicate (a) the URL, (b) the corresponding
annotation (if any), and (c) the encoding with which the content of each is
associated.

In figure 2, we can see that two URLs are imported (only
the end of each URL is visible on the figure) and that each is provided with
an annotation whose key is author. The first URL associates value Dickens
with this key and is encoded in utf-8; the second one has value Fitzgerald
and is encoded in iso-8859-1.

The first buttons on the right of the imported URLs’ list enable the user to
modify the order in which they appear in the output segmentation (Move Up
and Move Down), to delete an URL from the list (Remove) or to
completely empty it (Clear All). Except for Clear All, all these
buttons require the user to previously select an entry from the list. Import
List enables the user to import a list of URLs in JSON format (see
JSON im-/export format, URL list)
and to add it to the previously selected sources. In the opposite Export
List enables the user to export the source list in a JSON file.

The remainder of the Sources section allows the user to add new URLs to
the list. these must first be inputted in the field with the same name before
they can be added to the list by clicking on the Add button. In order for
several URLs to be simultaneously added, they must be separated by the string
” / ” (space + slash + space).

Before adding one or more URLs to the list by clicking on Add, it is
possible to select their encoding (Encoding), and to assign an annotation
by specifying its key in the Annotation key field and the corresponding
value in the Annotation value field. These three parameters (encoding,
key, value) will be applied to each URL appearing in the URLs field
at the moment of their addition to the list with Add.

The Import URLs with key checkbox enables the program to create for each imported URL an
annotation whose value is the URL (as displayed in the list) and whose
key is specified by the user in the text field on the right of the checkbox.
Similarly the button Auto-number with key enables the program to
automatically number the imported URLs and to associate the number to the
annotation key specified in the text field on the right.

In figure 2, it was thus decided to assign the label
novels to the output segmentation, and to associate the name of each URL to
the annotation key url. On the other hand, the auto-numbering option
has not been enabled.

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface.

Below the Send button, the user finds the length of the output segmentation in
characters, or the reasons why no segmentation is emitted (inability to
retrieve the data, encoding issue, etc.). In the example, the two segments
corresponding to the imported URLs’ content thus total up to 1’300’344
characters.

Remote control

URLs is one the widgets that can be controlled by means of the
Message widget. Indeed, it can receive in input a message consisting
of a URL list in JSON format (see JSON im-/export format, URL list), in which case the list
of URLs specified in this message replaces previously imported sources (if
any). Note that removing the incoming connection from the Message instance
will not, by itself, remove the list of URLs imported in this way from the
URLs instance’s interface; conversely, this list of files can be
modified using buttons Move up/down, Remove, etc. even if the incoming
connection from the Message instance has not been removed. Finally, note
that if an URLs instance has the basic version of its interface activated
when an incoming connection is created from an instance of Message, it
automatically switches to the advanced interface.

Messages

Information

	Data correctly sent to output: <n> segments (<m> characters).

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically checkbox
has not been selected, so the user is prompted to click the Send
button (or equivalently check the box) in order for computation and data
emission to proceed.

	No data sent to output yet: no URL selected.

	The widget instance is not able to emit data to output because no input
URL has been selected.

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings and Errors below).

Warnings

	No label was provided.

	A label must be entered in the Output segmentation label field in
order for computation and data emission to proceed.

	No annotation key was provided for auto-numbering.

	The Auto-number with key checkbox has been selected and an annotation
key must be specified in the text field on the right in order for
computation and data emission to proceed.

	JSON message on input connection doesn’t have the right keys and/or values.

	The widget instance has received a JSON message on its Message input
channel and the keys and/or values specified in this message do not match
those that are expected for this particular widget type (see JSON
im-/export format, File list).

	JSON parsing error.

	The widget instance has received data on its Message input channel and
the data couldn’t be correctly parsed. Please use a JSON validator to
check the data’s well-formedness.

Errors

	Couldn’t retrieve <URL>.

	An URL couldn’t be retrieved and read, possibly because it is incorrect, or
because the internet connexion has not been working properly.

	Encoding error or Encoding error: <URL>.

	An URL couldn’t be read with the specified encoding (it must be in another
encoding).

Examples

	Cookbook: Import text from internet location

See also

	Reference: JSON im-/export format, URL list

	Reference: Message widget

Segmentation processing widgets

Widgets of this category take Segmentation data in input and emit data of
the same type. Some of them (Preprocess and Recode) generate
modified text data. Others (Merge, Segment, Select,
Intersect and Extract XML) do not generate new text data but
only new Segmentation data. Display, finally, is mainly used to
visualize (or export) the details of a given Segmentation object (content
and address of segments, as well as their possible annotations).

	Preprocess

	Recode

	Merge

	Segment

	Select

	Intersect

	Extract XML

	Display

Preprocess

[image: _images/Preprocess_54.png]
Basic text preprocessing.

Signals

Inputs:

	Segmentation

Segmentation covering the text that should be preprocessed

Outputs:

	Text data

Segmentation covering the modified text

Description

This widget inputs a segmentation, creates a modified copy of the content of
the segmentation, and outputs a new segmentation corresponding to the modified
data. The possible modifications are on the case (lower case/upper case) and
the replacing of accentuated characters by their non-accentuated equivalents.

[image: Interface of the Preprocess widget]

Figure 1: Interface of the Preprocess widget.

Note that Preprocess creates a copy of each modified segment, which
increases the program’s memory footprint; moreover this widget can only work
on segmentations without any overlap, which means no part of the text is
covered by more than one segment.

the Transform case checkbox triggers the systematic modification of the case: select to lower to convert every
character to lower case and to upper to convert them to upper case. The
Remove accents checkbox controls the replacement of accentuated character
by their non-accentuated equivalents (é -> e, ç -> c, etc.).

The Copy annotations button copies all the annotations of the input segmentation to the output
segmentation; it is only accessible when the Advanced settings checkbox is
selected (otherwise the annotations are by default copied).

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface or when its input data are
modified (by deletion or addition of a connection, or because modified data is
received through an existing connection).

Below the Send button, the user finds the number of segments present in the output
segmentation, or the reasons why no segmentation is emitted (no input data,
overlaps in the input segmentation, etc.).

Caveat

As one of the rare widgets of Textable that do create new strings and not
only new segmentations, Preprocess is prone to a very specific and
possibly disconcerting type of error, which can be best understood by studying
an example.

Suppose that you wish to count word frequency in the content of two
Text Field instances–a scenario similar to that illustrated in section
Counting in specific contexts. You could
use Merge to combine the Text Field instances’ output in a
single segmentation (see figure 2 below), then
segment the latter into words with Segment. You would eventually
feed both the segmentation emitted by Segment (specifying units) and
by Merge (specifying contexts) to an instance of Count for
building the frequency table.

[image: Counting words in the content of two Text Field instances]

Figure 2: Counting words in the content of two Text Field instances.

Moreover, suppose that you want to convert the input texts to lower case
before counting word frequency. An intuitive way of performing this is by
inserting a Preprocess instance between Merge and Segment as
on figure 3 below. However, because Preprocess
creates a new string for each input segment and emits a segmentation that
refers to these new strings, this raises a rather insidious issue.

[image: Counting words in the content of two Text Field instances]

Figure 3: WRONG way of inserting a Preprocess instance in the schema.

To no effect, Count will attempt to find occurrences of the units
specified by the segmentation received from Segment in the contexts
specified by the segmentation received from Merge; since those actually
belong to distinct strings, none of these units occurs in any of these
contexts and the frequency table will remain hopelessly empty (as indicated by
the warning symbol on top of the Count widget instance).

Luckily, a small wiring modification suffices to entirely solve the problem:
the connection between Merge and Count should simply be replaced
by a direct connection between Preprocess and Count, as on
figure 4 below. This way, units and contexts refer
to the same set of strings and occurrences of the ones can be properly counted
in the others.

[image: Counting words in the content of two Text Field instances]

Figure 4: RIGHT way of inserting Preprocess.

Messages

Information

	Data correctly sent to output: <n> segments.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically checkbox
has not been selected, so the user is prompted to click the Send
button (or equivalently check the box) in order for computation and data
emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings below).

Warnings

	No label was provided.

	A label must be entered in the Output segmentation label field in
order for computation and data emission to proceed.

	Input segmentation is overlapping.

	At least two of the input segments cover the same substring, which this
widget cannot handle. Make sure every input segment covers a distinct
substring.

Examples

	Getting started: Merging segmentations together

	Getting started: Annotating by merging

	Cookbook: Merge several texts

See also

	Getting started: Tagging table rows with annotations

Examples

	Cookbook: Convert text to lower or upper case

	Cookbook: Remove accents from text

See also

	Getting started: Counting in specific contexts

	Reference: Text Field widget

	Reference: Merge widget

	Reference: Segment widget

	Reference: Count widget

Recode

[image: _images/Recode_54.png]
Custom text recoding using regular expressions.

Signals

Inputs:

	Segmentation

Segmentation covering the text that should be recoded

	Message

JSON Message controlling the list of substitutions

Outputs:

	Recoded text data

Segmentation covering the recoded text

Description

This widget inputs a segmentation, creates a modified copy of its content, and
outputs a new segmentation corresponding to the modified data. The
modifications applied are defined by substitutions, namely pairs
composed of a regular expression (designed to identify portions of text that
should be modified) and a replacement string.

It is possible to “capture” text portions using parentheses appearing in the
regular expressions, in order to insert them in the replacement strings, where
sequences &1, &2, etc. correspond to the successive pairs of
parentheses (numbered on the basis of the position of the opening
parenthesis).

Note that Recode creates a copy of each modified segment, which
increases the program’s memory footprint; moreover this widget can only work
on segmentations without any overlap, which means no part of the text is
covered by more than one segment.

The interface of Recode is available in two versions, according to
whether or not the Advanced Settings checkbox is selected.

Basic interface

The basic version of the widget is limited to the application of a single
substitution. Section Substitution (see figure 1 below) allows the user to specify the regular expression
(Regex) and the corresponding replacement string (Replacement string).
If the replacement string is left empty, the text parts identified by the
regular expression will simply be deleted; it is the case in the example of
figure 1, which leads to the deletion of XML/HTML
tags. 1

[image: Basic interface of the Recode widget]

Figure 1: Recode widget (basic interface).

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface or when its input data are
modified (by deletion or addition of a connection, or because modified data is
received through an existing connection).

Below the Send button, the user finds all the indications regarding the current status of the
widget instance (see Messages below, section Information).

Advanced interface

In its advanced version, the Recode widget allows the user to define
several substitutions and to determine the order in which they should
successively be applied to each segment of the input segmentation.

[image: Advanced interface of the Recode widget]

Figure 2: Recode widget (basic interface).

The advanced interface (see figure 2 above) presents
similarities with that of the Text Files, URLs, and
Segment widgets. The Substitutions section allows the user to
define the substitutions applied to each successive input segment and to
determine their application order. In the list displayed at the top of the
window, each line specifies a substitution, and the columns indicate for each
substitution (a) the corresponding regular expression, (b) the (possibly
empty) replacement string, and (c) the options associated with the regular
expression. 2

On figure 2 above, we can see that three substitutions
have been specified. The first deletes XML/HTML tags (it replaces them with
the empty string). The second replaces occurrences of British English forms
(behaviour, colour, and neighbour, possibly capitalized, since the
Ignore case option is selected) with their American English variants
(behavior, color, and neighbor), while the last replaces sequences
like a X of mine with my X; thus they illustrate the possibility to
“capture” text portions through parentheses appearing in the regular
expression.

To take a concrete example, the successive application of these three
substitutions to string

<example>I've just met a neighbour of mine.</example>

will produce in turns the modified versions

I've just met a neighbour of mine.

I've just met a neighbor of mine.

I've just met my neighbor.

The first buttons on the right of the substitution list allow the user to
modify the order in which they are successively applied to each segment of the
input segmentation (Move Up and Move Down), to delete a substitution
from the list (Remove) or to empty it entirely (Clear All). Except for
Clear All, all of these buttons require the selection of an entry in the
list beforehand. Import List enables the user to import a list of
substitutions in JSON format (see JSON im-/export format,
Substitution list) and to add them to those
already selected. Export List enables the user on the contrary to export
the list of substitutions in a JSON format file.

The remaining part of the Substitutions section allows the user to add new
substitutions to the list. To define a new substitution, one must specify the
regular expression (Regex) and the corresponding replacement string
(Replacement string); the latter can be left empty, in which case the text
portions identified by the regular expression will simply be deleted. The
Ignore case (i), Unicode dependent (u), Multiline (m) and Dot
matches all (s) checkboxes control the application of the corresponding
options to the regular expression. Adding the new substitution to the list is
achieved by clicking on the Add button.

The Options section allows the user to define the output segmentation
label. The Copy annotations checkbox copies every annotation of the input
segmentation to the output segmentation.

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface or when its input data are
modified (by deletion or addition of a connection, or because modified data is
received through an existing connection).

Below the Send button, the user finds all the indications regarding the current status of the
widget instance (see Messages below, section Information).

Remote control

Recode is one the widgets that can be controlled by means of the
Message widget. Indeed, it can receive in input a message consisting
of a substitution list in JSON format (see JSON im-/export format, Substitution list), in which
case the list of substitutions specified in this message replaces those
previously specified (if any). Note that removing the incoming connection from
the Message instance will not, by itself, remove the list of substitutions
imported in this way from the Recode instance’s interface; conversely,
this list of files can be modified using buttons Move up/down, Remove,
etc. even if the incoming connection from the Message instance has not
been removed. Finally, note that if a Recode instance has the basic
version of its interface activated when an incoming connection is created from
an instance of Message, it automatically switches to the advanced
interface.

Caveat

As one of the rare widgets of Textable that do create new strings and not
only new segmentations, Recode is prone to a very specific and possibly
disconcerting type of error, which can be best understood by studying the
example given in the documentation of Preprocess (section
Caveat), where all that is said about Preprocess also
applies to Recode.

Messages

Information

	Data correctly sent to output: <n> segments.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically checkbox
has not been selected, so the user is prompted to click the Send
button (or equivalently check the box) in order for computation and data
emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings and Errors below).

Warnings

	No label was provided.

	A label must be entered in the Output segmentation label field in
order for computation and data emission to proceed.

	Input segmentation is overlapping.

	The instance’s input segmentation contains overlapping segments, which
preempts the application of recoding operations.

	JSON message on input connection doesn’t have the right keys and/or values.

	The widget instance has received a JSON message on its Message input
channel and the keys and/or values specified in this message do not match
those that are expected for this particular widget type (see JSON
im-/export format, Substitution list).

	JSON parsing error.

	The widget instance has received data on its Message input channel and
the data couldn’t be correctly parsed. Please use a JSON validator to
check the data’s well-formedness.

Errors

	Regex error: <error_message>.

	The regular expression entered in the Regex field is invalid.

	Regex error: <error_message> (substitution #<n>).

	The n-th regular expression in the Substitutions list is invalid.

	Reference to unmatched group in replacement string.

	A replacement string specified by the user contains a reference to a
numbered variable (&1, &2, …) which turns out to not always have
a matching element.

Examples

	Cookbook: Replace all occurrences of a string/pattern

See also

	Reference: JSON im-/export format, Substitution
list

	Reference: Message widget

	Reference: Preprocess (section “Caveat”)

	Getting started: A note on regular expressions

Footnotes

	1

	For more details concerning the regular expression syntax, see the
Python documentation [http://docs.python.org/library/re.html].
Note that option -u (Unicode dependent) is activated by default.

	2

	For more details on the effect of options -i, -u, -m, and
-s, see the
Python documentation [http://docs.python.org/library/re.html].

Merge

[image: _images/Merge_54.png]
Merge two or more segmentations.

Signals

Inputs:

	Segmentation (multiple)

Any number of segmentations that should be merged together

Outputs:

	Merged data

Merged segmentation

Description

This widget takes several input segmentations, successively copies each
segment of each input segmentation to form a new segmentation, and sends this
segmentation to its output connections.

[image: Merge widget (advanced interface)]

Figure 1: Merge widget (advanced interface).

The Options section allows the user to import and label segments. The Import labels with
key checkbox enables the user to create for each input segmentation an
annotation whose value is the segmentation label (as displayed in the list)
and whose key is specified by the user in the text field on the right of the
checkbox. Similarly, the Auto-number with key checkbox enables the program
to automatically number the output segments and to associate the number to the
annotation key specified in the text field on the right. The Copy
annotations checkbox copies every input segmentation annotation to the
output segmentation.

1 The Fuse duplicate segments checkbox enables the program to
fuse into a single segment several distinct segments whose addresses are the
same; the annotations associated to the fused segments are all copied in the
single resulting segment. 2

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface or when its input data are
modified (by deletion or addition of a connection, or because modified data is
received through an existing connection).

Below the Send button, the user finds the number of segments in the output
segmentation, or the reasons why no segmentation is emitted (no input data,
no label specified for the output segmentation, etc.).

Messages

Information

	Data correctly sent to output: <n> segments.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically checkbox
has not been selected, so the user is prompted to click the Send
button (or equivalently check the box) in order for computation and data
emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings below).

Warnings

	No label was provided.

	A label must be entered in the Output segmentation label field in
order for computation and data emission to proceed.

	No annotation key was provided for imported labels.

	The Import labels with key checkbox has been selected and an annotation
key must be specified in the text field on the right in order for
computation and data emission to proceed.

	No annotation key was provided for auto-numbering.

	The Auto-number with key checkbox has been selected and an annotation
key must be specified in the text field on the right in order for
computation and data emission to proceed.

Examples

	Getting started: Merging segmentations together

	Getting started: Annotating by merging

	Cookbook: Merge several texts

See also

	Getting started: Tagging table rows with annotations

Footnotes

	1

	Note that if sorting is enabled, it may well result in segments being
ordered in a different way than specified by the user in the
Ordering section.

	2

	In the case where the fused segments have distinct values for the same
annotation key, only the value of the last segment (in the order of the
output segmentation before fusion) will be retained.

Segment

[image: _images/Segment_54.png]
Subdivide a segmentation using regular expressions.

Signals

Inputs:

	Segmentation

Segmentation that should be further segmented

	Message

JSON Message controlling the list of regular expressions

Outputs:

	Segmented data

Segmentation containing the newly created segments

Description

This widget inputs a segmentation and creates a new segmentation by
subdividing each original segment into a series of new segments. By default,
it works on the basis of a description of the form of the new segments (by
means of regular expressions); alternatively, it can also operate based on a
description of the separators that appear in-between the segments. It also
allows the user to create annotations for the output segments.

In the same way as for the Recode widget, it is possible to “capture”
text portions with square brackets used in a regular expression, notably to
copy them in the annotation key and/or in the associated value; for this we
use the notations &1, &2, etc. corresponding to the pairs of
successive brackets (numbered on the basis of the position of opening
parentheses) of the regular expression. 1

The interface of Segment is available in two versions, according to
whether or not the Advanced Settings checkbox is selected.

Basic interface

The basic version of the widget permits to choose between four types of Text Data segmentation output.
The Segment into Letters option segments text data into letters; the Segment into Words option segments
text data into words (which is mandatory in order to count segments, see cookbook); the Segment into lines option segments text data into lines.
Eventually, Use a regular expression opens a short Regex section (see figure 1 below).
This Regex can be a particular string of characters (a word) or a regular expression. For instance,``w+`` creates a
segment for each word of each input segment (to be precise: each continuous
sequence of alphanumerical characters and underscores). 2

[image: Basic interface of the Segment widget]

Figure 1: Segment widget (basic interface).

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface or when its input data are
modified (by deletion or addition of a connection, or because modified data is
received through an existing connection).

Below the Send button the user finds all the indications regarding the current status of the
widget instance (see Messages below, section Information).

Advanced interface

In its advanced version, the widget enables the user to define several regular
expressions and to determine the order in which they should successively be
applied to each segment of the input segmentation. It also allows the user to
specify if a given regular expression describes the form of the targeted
segments (Tokenize mode) or rather the form of the separators in-between
these segments (Split mode). 3

[image: Advanced interface of the Segment widget]

Figure 2: Segment widget (advanced interface).

The advanced interface (see figure 2 above) presents
similarities with that of the Text Files, URLs, and
Recode widgets. The Regexes section allows the user to define the
regular expressions applied successively to each segment of the input
segmentation and to determine their application order. In the list which
appears on top of the window, the columns indicate (a) the mode associated to
this regular expression, namely t for Tokenize (default) or s for
Split, (b) the actual expression, (c) the corresponding annotation (if any),
and (d) the options associated to this expression.

On figure 2 above, we can thus see that four regular
expressions have been defined, each in the Tokenize mode; each identifies
a type of character in the input segmentation and assigns to it an annotation
whose key is type. The character classes identified by the four expressions
are not mutually exclusive, however after having successively applied them,
the widget automatically sorts the segments (exactly like the Sort
segments option of the Merge widget) and fuses those whose addresses
are identical, given that the Fuse duplicates option is selected, which
triggers the fusion of segments with identical addresses (see below). In the
end, each character thus belongs to a single segment, whose value for the
annotation key type is the last one that was assigned to it according to the
regular expressions application order.

The first of the four expressions (.) creates a segment for each character
and assigns the annotation value other to it. The second (\w) creates a
segment for each alphanumerical character, and assigns the annotation value
consonant to it. The last two respectively identify vowels ([aeiouy])
and digits ([0-9]) and annotate them as such. To illustrate the mechanism
explained in the previous paragraph, it can be noted that before segment
sorting and duplicate fusion, each vowel of the input segmentation is
associated with three segments whose values for the annotation key type are
(in order) other, consonant, and vowel; after sorting and fusion, only
the last of these values is retained.

The first buttons on the right of the list of regular expressions allow the
user to modify the order in which they are successively applied to each
segment of the input segmentation (Move Up and Move Down), to delete
an expression from the list (Remove) or to empty it entirely (Clear
All). Except for Clear All, all of these buttons require the selection
of an entry in the list beforehand. Import List enables the user to import
a list of regular expressions in JSON format (see JSON im-/export format, Regular expression list)
and to add them to those already selected. Export List enables the user on
the contrary to export the list of regular expressions in a JSON file.

The remaining part of the Regexes section allows the user to add new
regular expressions to the list. To do so, the regular expression should be
specified (Regex) as well as, optionally, the annotation key and the
corresponding value (Annotation key and value). The Ignore case
(i), Unicode dependent (u), Multiline (m) and Dot matches all
(s) checkboxes control the application of the corresponding options to the
regular expressions. Adding the new regular expression to the list is executed
by finally clicking on the Add button.

Through the Options section, the Auto-number with key checkbox enables the program to
automatically number the output segments and to associate the number to the
annotation key specified in the text field on the right. The Import
annotations checkbox copies the annotations of each input segment to the
corresponding output segments. The Fuse duplicate segments checkbox
enables the program to fuse into a single segment several distinct segments
whose addresses are identical; the annotations associated to the fused
segments are all copied in the single resulting segment. 4

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface or when its input data are
modified (by deletion or addition of a connection, or because modified data is
received through an existing connection).

Below the Send button, the user finds indications regarding the current status of the
widget instance (see Messages below, section Information).

Remote control

Segment is one the widgets that can be controlled by means of the
Message widget. Indeed, it can receive in input a message consisting
of a regular expression list in JSON format (see JSON im-/export format, Regular expression list), in which case the list of regular
expressions specified in this message replaces those previously specified
(if any). Note that removing the incoming connection from the Message
instance will not, by itself, remove the list of regular expressions imported
in this way from the Segment instance’s interface; conversely, this list
of files can be modified using buttons Move up/down, Remove, etc. even
if the incoming connection from the Message instance has not been removed.
Finally, note that if a Segment instance has the basic version of its
interface activated when an incoming connection is created from an instance of
Message, it automatically switches to the advanced interface.

Messages

Information

	Data correctly sent to output: <n> segments.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically checkbox
has not been selected, so the user is prompted to click the Send
button (or equivalently check the box) in order for computation and data
emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings and Errors below).

Warnings

	No regex defined.

	A regular expression must be entered in the Regex field in order for
computation and data emission to proceed (in the advanced interface, the
Add button must also be clicked).

	No label was provided.

	A label must be entered in the Output segmentation label field in
order for computation and data emission to proceed.

	No annotation key was provided for auto-numbering.

	The Auto-number with key checkbox has been selected and an annotation
key must be specified in the text field on the right in order for
computation and data emission to proceed.

	JSON message on input connection doesn’t have the right keys and/or values.

	The widget instance has received a JSON message on its Message input
channel and the keys and/or values specified in this message do not match
those that are expected for this particular widget type (see JSON
im-/export format, Regular expression list).

	JSON parsing error.

	The widget instance has received data on its Message input channel and
the data couldn’t be correctly parsed. Please use a JSON validator to
check the data’s well-formedness.

Errors

	Regex error: <error_message>.

	The regular expression entered in the Regex field is invalid.

	Regex error: <error_message> (regex #<n>).

	The n-th regular expression in the Regexes list is invalid.

	Reference to unmatched group in annotation key and/or value.

	In the advanced interface, a regular expression has been associated with
an annotation key–value pair and in at least one of these terms reference
is made to a numbered variable (&1, &2, …) which turns out to
not always have a matching element.

Examples

	Getting started: Segmenting data into smaller units

	Cookbook: Segment text in smaller units

See also

	Reference: JSON im-/export format, Regular
expression list

	Reference: Message widget

	Getting started: A note on regular expressions

Footnotes

	1

	This possibility does not apply when the widget is configured to
identify the separators rather than the segments themselves
(Mode: Split, see Advanced interface).

	2

	It should be noted that the -u (Unicode dependent) option is
activated by default (see Python documentation [http://docs.python.org/library/re.html#re.UNICODE]).

	3

	NB: in Split mode, empty segments that might occur between two
consecutive occurrences of separators are automatically removed (this
is because the data model adopted by Orange Canvas cannot represent
empty segments).

	4

	In the case where the fused segments have distinct values for the same
annotation key, only the value of the last segment (in the order of the
output segmentation before fusion) will be retained.

Select

[image: _images/Select_54.png]
Select a subset of segments in a segmentation.

Signals

Inputs:

	Segmentation

Segmentation out of which a subset of segments should be selected

Outputs:

	Selected data (default)

Segmentation containing the selected segments

	Discarded data

Segmentation containing the discarded segments

Description

This widget inputs a segmentation and creates a new segmentation including
only some of the input segments. Segment selection can be based on their
content, their annotations, or their frequency; it can also be random. No
matter which method is used, the widget emits on a second output connection
(not selected by default) a segmentation containing the segments that were
not selected.

The interface of Select is available in two versions, according to
whether or not the Advanced Settings checkbox is selected.

Basic interface

The basic version of the widget (see figure 1 below) is
limited to the selection of segments based on a regular expression (see
Method: Regex in section Advanced interface below). The differences with
the advanced interface are the following: (i) regular expression options are
not accessible (-u, Unicode dependent, is nonetheless activated by
default); (ii) auto-numbering is disabled; and (iii) annotations are copied
by default.

[image: Basic interface of the Select widget]

Figure 1: Select widget (basic interface).

Advanced interface

In its advanced version, the Select section of the widget interface comes
in three versions depending on the value chosen in the Method drop-down
menu (see figures 2 to 4 below).

[image: Advanced interface of the Select widget (Regex method)]

Figure 2: Select widget (advanced interface, Regex method).

Method: Regex

This method consists of selecting the segments of the input segmentation whose
content or annotations are matched by a regular expression. The Mode
drop-down menu (see figure 2 above) allows the user to
specify if the segments corresponding to the regular expression should be
selected (Include) or not (Exclude), in which case the segments that
do not correspond to the regular expression will be selected.

The Annotation key drop-down menu allows the user to choose an annotation
key from the input segmentation; in that case, the segments whose annotation
values for this key are matched by the regular expression will be selected
(or not). If the value (none) is selected, the content of the segments
will be matched against the regular expression.

The Regex field is designed to specify the regular expression used for
segment selection, and the Ignore case (i), Unicode dependent (u),
Multiline (m) and Dot matches all (s) checkboxes control the
application of the corresponding options to this expression.

In the example of figure 2 above, the widget is
configured to include (Mode: Include) from the input segmentation the
segments whose annotation value for key category (Annotation key:
category) is either noun or verb (Regex: ^(noun|verb)$).

Method: Sample

This method consists of selecting the segments of the input segmentation with
a random sampling process, such that every input segment has the same
probability of being selected or not.

[image: Advanced interface of the Select widget (Sample method)]

Figure 3: Select widget (advanced interface, Sample method).

The Sample size expressed as drop-down menu (see figure 3 above) allows the user to choose the way in which to express
the wanted size for the sample. If the value Count is selected, as on
figure 3, the size of the sample will be expressed
directly in the number of segments (Sample size). If the Proportion
value is selected, the size will be expressed in percentage of input segments
(Sampling rate (%)).

Method: Threshold

This method consists of retaining from the input segmentation only the
segments whose content (or annotation value for a given key) has a frequency
in the segmentation that is comprised between given bounds.

[image: Advanced interface of the Select widget (Threshold method)]

Figure 4: Select widget (advanced interface, Threshold method).

The Annotation key drop-down menu (see figure 4
above) allows the user to select an annotation key from the input
segmentation; if so, the frequency of the annotation values associated with
this key will condition the inclusion of input segments. If the value (none)
is selected, the frequency of the segment content will be decisive.

The Threshold expressed as drop-down menu allows the user to choose the
way in which to express the minimal and maximal frequency limits. If the value
Count is selected, the limits will be expressed in absolute frequencies
(Min./Max. count). If the value Proportion is selected, as in
figure 4, the limits will be expressed in percentages
(Min./Max. proportion (%)). For both values (minimum and maximum),
thresholding is applied only if the corresponding box is checked.

In the figure 4 example, the widget is configured to
retain only the segments whose annotation value for the key category
(Annotation key) has a relative frequency (Threshold expressed as:
Proportion) comprised between 5% (Min. proportion (%)) and 10% (Max.
proportion (%)) in the input segmentation.

The elements of the Options section of the widget interface are common to
the three selection methods presented above. The Auto-number with key checkbox enables the program
to automatically number the segments of the output segmentation and to
associate the number to the annotation key specified in the text field on the
right. The Copy annotations checkbox copies every annotation of the input
segmentation to the output segmentation.

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface or when its input data are
modified (by deletion or addition of a connection, or because modified data is
received through an existing connection).

Below the Send button, some indications are given about the number of segments in the output
segmentation, or the reasons why no segmentation is emitted (no input data,
no selected input segment, etc.).

Messages

Information

	Data correctly sent to output: <n> segments.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically checkbox
has not been selected, so the user is prompted to click the Send
button (or equivalently check the box) in order for computation and data
emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings and Errors below).

Warnings

	No regex defined.

	A regular expression must be entered in the Regex field in order for
computation and data emission to proceed.

	No label was provided.

	A label must be entered in the Output segmentation label field in
order for computation and data emission to proceed.

	No annotation key was provided for auto-numbering.

	The Auto-number with key checkbox has been selected and an annotation
key must be specified in the text field on the right in order for
computation and data emission to proceed.

Errors

	Regex error: <error_message>.

	The regular expression entered in the Regex field is invalid.

Examples

	Getting started: Partitioning segmentations

	Getting started: Annotation-based selection

	Cookbook: Include/exclude segments based on a pattern

	Cookbook: Filter segments based on their frequency

	Cookbook: Create a random selection or sample of segments

Intersect

[image: _images/Intersect_54.png]
In-/exclude segments based on another segmentation.

Signals

Inputs:

	Segmentation (multiple)

Segmentation out of which a subset of segments should be selected
(“source” segmentation), or containing the segments that will be
in-/excluded from the former (“filter” segmentation”).

Outputs:

	Selected data (default)

Segmentation containing the selected segments

	Discarded data

Segmentation containing the discarded segments

Description

This widget inputs several segmentations and selects the segments of one of
them (“source” segmentation) on the basis of the segments present in another
(“filter” segmentation). It also emits on an output connection (not selected
by default) a segmentation containing the segments that were not selected.

Basic interface

The Intersect section of the widget’s basic interface (see figure 1 above) allows the user to specify if the segments of the
source segmentation that correspond to a type present in the filter
segmentation should be included (Mode: Include) in the output segmentation
or excluded (Mode: Exclude) from it. This section is also designed to
select the source segmentation (Source segmentation) and the filter
segmentation (Filter segmentation) among the input segmentations. 1

[image: Basic interface of the Intersect widget]

Figure 1: Intersect widget (basic interface).

The Source annotation key drop-down menu allows the user to select an
annotation key from the source segmentation; thus the segments whose
annotation value for this key corresponds to a type present in the filter
segmentation will be in-/excluded. If the value (none) is selected, the
segment content will be decisive.

Thus in figure 1 above, the widget inputs two
segmentations. The first (Source segmentation), whose label is words, is
the result of the segmentation of a text in words, as performed with the
Segment widget for instance. The second (Filter segmentation),
whose label is stopwords, is the result of the segmentation in words of a
list of so-called “stopwords” (articles, pronouns, prepositions,
etc.)–typically deemed irrelevant for information retrieval.

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface or when its input data are
modified (by deletion or addition of a connection, or because modified data is
received through an existing connection).

Below the Send button, the number of segments in the output
segmentation are indicated, or the reasons why no segmentation is emitted (no input data,
no selected input segment, etc.).

Advanced interface

The main difference between the widget’s basic and advanced interface is that
in the latter, section Intersect includes a Filter annotation key
drop-down menu and a Source annotation key.

If a given annotation key of the filter segmentation is
selected in the drop-down menu of the Filter annotation key,
the corresponding annotation value (rather than content) types
will condition the in-/exclusion of the source segmentation segments.
Since the Source annotation key drop-down menu is set on (none),
the content of input segments will determine the next steps (rather than the
values of some annotation key). Concretely, the source segmentation segments
(namely the words from the text) whose content matches that of a segment from
the filter segmentation (namely a stopword) will be excluded (Mode:
Exclude) from the output segmentation. By contrast, choosing the value
Include would result in including as output only the stopwords from the
text.

The advanced interface also offers two additional controls in section
Options. The Auto-number with key checkbox enable the program to
automatically number the segments from the output segmentation and to
associate their number to the annotation key specified in the text field on
the right. The Copy annotations checkbox copies every annotation from the
input segmentation to the output segmentation.

Messages

Information

	Data correctly sent to output: <n> segments.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically checkbox
has not been selected, so the user is prompted to click the Send
button (or equivalently check the box) in order for computation and data
emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings below).

Warnings

	No label was provided.

	A label must be entered in the Output segmentation label field in
order for computation and data emission to proceed.

	No annotation key was provided for auto-numbering.

	The Auto-number with key checkbox has been selected and an annotation
key must be specified in the text field on the right in order for
computation and data emission to proceed.

Examples

	Getting started: Using a segmentation to filter another

	Cookbook: Exclude segments based on a stoplist

Footnotes

	1

	It should be noted that the interface does not prevent the user from
selecting the same segmentation as source and filter, which can only
make sense if different values are selected in the Source annotation
key and Filter annotation key menus (the latter being only
available when the Advanced settings checkbox is selected).

	2

	Here it concerns the segmentation containing the selected segments and
emitted on the default output channel; the segmentation containing the
discarded segments receives the same label prepended with NEG_.

Extract XML

[image: _images/ExtractXML_54.png]
Create a new segmentation based on XML markup.

Signals

Inputs:

	Segmentation

Segmentation covering XML data based on which a new segmentation will be
created

Outputs:

	Extracted data

Segmentation containing the segments corresponding to extracted XML elements

Description

This widget inputs a segmentation, searches in its content portions
corresponding to a specific XML element type, and creates a segment for each
occurrence of this element. It should be noted that if a given occurrence is
distributed among several segments of the input segmentation, it will result
in the creation of as many segments in the output segmentation.

Every attribute from extracted elements is automatically converted in
annotation in the output segmentation. For example, extracting the element
<div> in the following fragment:

<div type="interjection">Cripes!</div>

will result in the creation of a segment whose content is Cripes! and whose
annotation value for key type is interjection.

This widget offers the easiest and most flexible way to import into Orange
Textable a segmentation and arbitrary annotations specified by the user
for a given text. Let us however mention the following limitation: the widget
automatically deletes all segments of zero length in the output segmentation.
As a consequence, it is impossible to import empty XML elements (be they in
the form <element></element> or <element/>).

Basic interface

In the basic widget interface (see figure 1 below),
the XML Extraction section allows the user to specify the XML element to
extract (XML element). The widget indeed only allows the extraction of a
single type of element at a time; however, it extracts every occurrence of
this element, including those embedded in other occurrences of the same type.

[image: Basic interface of the Extract XML widget]

Figure 1: Extract XML widget (basic interface).

The Remove markup checkbox triggers the deletion of XML tags embedded
within the extracted XML elements, if any. An important consequence of the
use of this option is that the extracted elements will potentially be
decomposed in several segments corresponding to portions of their content
which are separated by the deleted XML tags (see Advanced interface for an
example of this mechanism 1).

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface or when its input data are
modified (by deletion or addition of a connection, or because modified data is
received through an existing connection).

Below, the Send button, the user finds indications such as the number of segments in the output
segmentation, or the reasons why no segmentation is emitted (no input data,
no output segment created, etc.).

Advanced interface

The XML Extraction section of the widget interface (see figure 2 below) allows the user to configure the XML element
extraction. The field XML element allows the user to indicate the XML
element type which should be sought. The Import element with key checkbox
enables the program to assign to each output segment an annotation whose key
is the text contained in the field immediately on the right and whose value is
the name of the XML element extracted by the widget.

[image: Advanced interface of the Extract XML widget]

Figure 2: Extract XML widget (advanced interface).

If the Remove markup checkbox is selected, XML tags embedded within the
extracted XML elements will be excluded from the output segmentation. An
important consequence of the use of this option is that the extracted elements
will potentially be decomposed in several segments corresponding to portions
of their content which are separated by the excluded XML tags. For example,
given the following fragment:

<text>a <keyword>fragment</keyword> of XML data</text>

the extraction of element <text> will lead to the creation of three
segments:

a

fragment

of XML data

If on the other hand the Remove markup option is not selected, a single
segment will be created:

a <keyword>fragment</keyword> of XML data

The Prioritize shallow attributes checkbox determines the behavior of the
widget in the very particular case where (a) elements of the extracted type
are (exactly) embedded in one another, (b) they have different values for the
same attribute, (c) the Remove markup option is selected and (d) the
Fuse duplicates option (section Options) as well. This could be the
case in the extraction of the <div> element in the following fragment for
example:

<div type="A"><div type="B">two exactly embedded elements</div></div>

In such a case, the widget will first create two segments that have the exact
same address (since the embedded XML tags are deleted with Remove markup),
then by the effect of Fuse duplicates, it will seek to fuse them into one.
It will only be able to keep one of the rival annotation values A and B
for the annotation key type; by default, it will be the value associated to
the element closest to the root in the XML tree, namely A. If on the other
hand the Prioritize shallow attributes option is selected, the value of
the element closest to the “surface” will be kept, in our example B.

The Conditions subsection included in the XML Extraction section
allows the user to limit the extraction by specifying conditions bearing on
attributes of the extracted elements. These conditions are expressed in the
form of regular expressions that the given attribute values must match. In the
list appearing at the top of this subsection, the columns indicate (a) the
concerned attribute, (b) the corresponding regular expression, and (c) the
options associated to this expression. 2

In figure 2 above), we have thus limited the
extraction only to the <div> elements that have a type attribute whose value
is poem. If several conditions were defined, they would all have to be
fulfilled for an element to be extracted. The buttons on the right enable the
user to delete the selected condition (Remove) or to empty the list
completely (Clear All).

The remaining part of the Conditions subsection allows the user to add new
conditions to the list. To do so, the attribute in question (Attribute)
and the corresponding regular expression (Regex) must be specified. The
Ignore case (i), Unicode dependent (u), Multiline (m) and Dot
matches all (s) checkboxes manage the application of the corresponding
options to the regular expression. Adding the new condition to the list is
finally carried out by clicking on the Add button.

Through the Options section the Auto-number with key checkbox enables the program to
automatically number the segments of the output segmentation and to associate
the number to the annotation key specified in the text field on the right. The
Import annotations checkbox copies in each output segment every annotation
associated to the corresponding segment of the input segmentation. The Merge
duplicate segments checkbox enables the program to fuse distinct segments
whose addresses are the same in a single segment; the annotations associated
to the fused segments are copied in the single resulting segment. 3

The Send button triggers the emission of a segmentation to the output
connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface or when its input data are
modified (by deletion or addition of a connection, or because modified data is
received through an existing connection).

Below the Send button, the user finds some indications such as the number of segments in the output
segmentation, or the reasons why no segmentation is emitted (no input data,
no output segment created, etc.).

Messages

Information

	Data correctly sent to output: <n> segments.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically checkbox
has not been selected, so the user is prompted to click the Send
button (or equivalently check the box) in order for computation and data
emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings and Errors below).

Warnings

	No XML element was specified.

	The name of an XML element must be entered in the XML element field in
order for computation and data emission to proceed.

	No label was provided.

	A label must be entered in the Output segmentation label field in
order for computation and data emission to proceed.

	No annotation key was provided for element import.

	In the advanced settings, the Import element with key checkbox has been
selected and an annotation key must be specified in the text field on the
right in order for computation and data emission to proceed.

	No annotation key was provided for auto-numbering.

	The Auto-number with key checkbox has been selected and an annotation
key must be specified in the text field on the right in order for
computation and data emission to proceed.

Errors

	Regex error: <error_message> (condition #<n>).

	The regular expression in the n-th line of the Conditions list is
invalid.

	XML parsing error (missing closing tag / orphan closing tag).

	The input XML data couldn’t be correctly parsed. Please use an XML
validator to check the data’s well-formedness.

Examples

	Getting started: Converting XML markup to annotations

	Cookbook: Convert XML tags to Orange Textable annotations

Footnotes

	1

	In comparison with the advance interface, it should also be noted that
in the basic interface the options Prioritize shallow attributes
and Fuse duplicates are disabled by default.

	2

	See Python documentation [http://docs.python.org/library/re.html].

	3

	In the case where the fused segments have distinct values for the same
annotation key, only the value of the last segment (in the order of the
extracted segments before fusion) will be retained.

Display

[image: _images/Display_54.png]
Display or export the details of a segmentation.

Signals

Inputs:

	Segmentation

Segmentation to be displayed or exported.

Outputs:

	Bypassed segmentation (default)

Exact copy of the input segmentation

	Displayed segmentation

Segmentation covering the entire string displayed in the widget’s interface

Description

This widget inputs a segmentation and displays on screen the content and the
annotation of the segments that compose it. The widget allows the user
notably to export the information in a text file. Moreover, it forwards the
segmentation without any modification on its output connections. 1

Display plays an essential role in schema construction: it is the best
way to check that the configuration of the other segmentation processing
widgets leads to the desired result in terms of segment and annotation
creation or modification.

It should be noted that for long segmentations, the widget may appear stuck
for a certain time after the progress bar has run – a problem related to the
graphic interface library on which Orange Canvas relies. Unless memory
overflow occurs, the problem normally solves itself after a few moments.

Basic interface

In its basic version, the widget formats the input segmentation in HTML and
displays for each segment its number, its complete address (string index,
start and end positions) as well as its annotations (see
figure 1). The Navigation section enables the
program to directly show a particular segment using Go to segment.

[image: Basic interface of the Display widget]

Figure 1: Display widget (basic interface).

It can be noted that the basic interface of Display is more sober than
those of the other widgets of Orange Textable: it does not include a Send button nor a Send automatically checkbox.
What motivates this design is the will to emphasize the fundamental
functionality of visualization of the input segmentation content and
annotations – main reason for the use of Display in most cases. In this
context, by default, data are automatically sent on output connections.

Advanced interface

The widget’s advanced interface (see figure 2) restores
informative indications such as the number of segments in the input
segmentation or the reasons why no segmentation is emitted (for example
no input data) below the Text data window. The Send button triggers the emission of a segmentation to
the output connection(s). When it is selected, the Send automatically
checkbox disables the button and the widget attempts to automatically emit a
segmentation at every modification of its interface or when its input data are
modified (by deletion or addition of a connection, or because modified data is
received through an existing connection).

[image: Advanced interface of the Display widget]

Figure 2: Display widget (advanced interface).

The Apply custom formatting button enables the program to produce a
personalized rendering. In this mode, the formatting of each segment is
determined by a string entered in the Format field. This string can
contain text that will be reproduced as it is in the rendered output, as well
as references to variables to insert in the output. These references take the
following general form:

%(variable_name)format

where variable_name designates the variable to insert and format the
desired format for this variable. For a basic use, all you need is to know
that the format code s designates a character string and i an integer.
2 If the name of the variable is one of the following predefined strings,
it will be interpreted as indicated in the right column: 3

	variable name

	meaning

	__content__

	segment content

	__num__

	segment number

	__str_index__

	string index

	__str_index_raw__

	string index counting from 0

	__start__

	initial position

	__start_raw__

	initial position counting from 0

	__end__

	final position

If on the contrary the name of the variable is not among those of the list,
the program will interpret it as an annotation key and will attempt to
display the corresponding value (or the string __none__ if this key is not
defined for the considered segment).

The string entered in the Segment delimiter field, if any, will be
inserted between each segment of the formatted segmentation. Use the sequence
n for a line break and t for tabulation.

The Header and Footer fields enable the user to specify strings that
will be inserted respectively at the beginning and the end of the formatted
segmentation.

To take a simple example, consider the following (extract of a) segmentation
of the string a simple example 4:

	content

	start

	end

	letter category

	a

	1

	1

	vowel

	s

	3

	3

	consonant

	i

	4

	4

	vowel

	…

	…

	…

	…

	e

	16

	16

	vowel

By entering:

	<word>\n in the header field,

	<letter pos="%(__num__)i" type="%(letter category)s">%(__content__)s</letter>
in the format field,

	\n in the segment delimiter field, and

	\n</word> in the footer field,

we obtain the following formatting:

<word>
<letter pos="1" type="vowel">a</letter>
<letter pos="2" type="consonant">s</letter>
<letter pos="3" type="vowel">i</letter>
<letter pos="4" type="consonant">m</letter>
<letter pos="5" type="consonant">p</letter>
<letter pos="6" type="consonant">l</letter>
<letter pos="7" type="vowel">e</letter>
<letter pos="8" type="vowel">e</letter>
<letter pos="9" type="consonant">x</letter>
<letter pos="10" type="vowel">a</letter>
<letter pos="11" type="consonant">m</letter>
<letter pos="12" type="consonant">p</letter>
<letter pos="13" type="consonant">l</letter>
<letter pos="14" type="vowel">e</letter>
</word>

The Export section of the widget interface also allows the user to export
the displayed segmentation (standard HTML or user-defined format) in a file.
The encoding can be selected (Encoding) then click on Export to open
a file selection dialog. By clicking the Copy to clipboard button, the
user may also to copy the displayed segmentation in order to paste it in
another application for instance; in this case, the utf-8 encoding is used by
default.

When the option Apply custom formatting is not selected, the
Navigation section is enabled and allows the user to view a particular
segment through the Go to segment control.

Messages

Information

	Data correctly sent to output: <n> segments.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically checkbox
has not been selected, so the user is prompted to click the Send
button (or equivalently check the box) in order for computation and data
emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to ‘Displayed segmentation’ channel, see ‘Widget state’ below.

	A problem with the ‘Format’ parameter prevents this widget instance
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see and Errors below).

Errors

	Format mismatch error: a <variable_type> is required.

	In the advanced interface, the string entered in the Format field
indicates that a variable of a certain type (e.g. float) is expected,
but in at least one case, the corresponding value is of another type
(e.g. string). The string type (e.g. %(__content__)s) is usually the
safest bet.

	Format mismatch error: not enough arguments for format string.

	In the advanced interface, the string entered in the Format field
indicates that a variable is expected but in at least one case, there is
no corresponding value. Make sure that no placeholder is used without an
explicit name (always use e.g. %(__content__)s, and never %s).

	Format error: missing variable type.

	In the advanced interface, a variable type indication is missing in the
string entered in the Format field. Make sure that no placeholder is
used without a variable type indication (always use e.g.
%(__content__)s, and never %(__content__)).

	Format error: missing name.

	In the advanced interface, a variable name is missing in the string entered
in the Format field. Make sure that no placeholder is used without a
variable name (always use e.g. %(__content__)s, and never %()s).

Examples

	Getting started: Keyboard input and segmentation display

	Cookbook: Display text content

	Cookbook: Export text content (and/or change text encoding)

Footnotes

	1

	The widget also sends, on a second channel not selected by default, a
segmentation with a single segment containing the entire string as it
is displayed in the widget’s interface.

	2

	For more details on the syntax of format codes, see Python
documentation [http://docs.python.org/library/stdtypes.html#string-formatting].

	3

	In general, predefined strings in Orange Textable have in common that
they begin and end by two underscore characters (_); it is greatly
recommended to avoid this form for every name supplied by the user (in
particular for the segmentation labels, as well as for the keys and
annotation values).

	4

	By convention, we do not indicate here the string index associated with
each segment but only its start and end positions, along with the
annotation values associated with it; moreover, for the sake of
readability, we do indicate the content of each segment, though it is
not formally part of the segmentation (but rather of the string to
which the segmentation refers).

Table construction widgets

Widgets of this category take Segmentation data in input and emit tabular
data in the internal format of Orange Textable. They are thus ultimately
responsible for converting text to tables, either by counting items
(Count), by measuring their length (Length), by quantifying
their diversity (Variety). Widget Cooccurrence makes
it possible to measure the tendency of text units to occur in the same contexts,
while Context serves to build concordances and collocation lists.
Finally, Category exploits categorical information associated with
segmentations.

	Count

	Length

	Variety

	Cooccurrence

	Context

	Category

Count

[image: _images/Count_54.png]
Count segment types.

Signals

Inputs:

	Segmentation (multiple)

Segmentation whose segments constitute the units to be counted or
the contexts in which the units will be counted

Outputs:

	Pivot Crosstab

Table displaying the absolute frequency of units

Description

This widget inputs one or several segmentations, counts the frequency of
segments defined by one of the segmentations (potentially within segments
defined by another), and sends the result in the form of a contingency
table (or co-occurrence matrix or also term–document matrix).

The contingency tables produced by this widget are of PivotCrosstab type,
a subtype of the generic Table format (see Convert widget, section
Table formats). In such a table, each column
corresponds to a unit type, each line corresponds to a context type, and
the cell at the intersection of a given column and line contains the count (or
absolute frequency, or also number of occurrences) of this unit type in this
context type.

To take a simple example, consider two segmentations of the string a simple
example 1:

	label = words

	content

	start

	end

	part of speech

	word category

	a

	1

	1

	article

	grammatical

	simple

	3

	8

	adjective

	lexical

	example

	10

	16

	noun

	lexical

	label = letters (extract)

	content

	start

	end

	letter category

	a

	1

	1

	vowel

	s

	3

	3

	consonant

	i

	4

	4

	vowel

	…

	…

	…

	…

	e

	16

	16

	vowel

Typically, we could define unit types based on the content of the segments
of the letters segmentations, and context types based on the content of
the segments of the words segmentations. Counting these unit types in these
contexts types would thus produce the following contingency table 2:

	__context__

	a

	s

	i

	m

	p

	l

	e

	x

	a

	1

	0

	0

	0

	0

	0

	0

	0

	simple

	0

	1

	1

	1

	1

	1

	1

	0

	example

	1

	0

	0

	1

	1

	1

	2

	1

Alternatively, we could rather count the annotation values (instead of
the content) of the units and/or of the contexts. For example, by defining
units on the basis of the annotations associated to the key letter category
in the letters segmentation, and contexts on the basis of the annotations
associated to the key word category in the words segmentation, we would
obtain the following table:

	__context__

	vowel

	consonant

	grammatical

	1

	0

	lexical

	5

	8

This way of selecting segmentations and annotation keys constitutes an
extremely flexible mechanism which enables the user to easily produce a
variety of contingency tables. Note that it is up to the user to provide a
coherent definition of the units and contexts. In general, a given unit is
considered to occur in a given context if, (a) the segment corresponding
to the unit and the context are both be associated to the same string, (b)
the initial position of the unit segment in the string is higher or equal to
that of the context segment, and (c) conversely the final position of the unit
is lower or equal to that of the context. In short, the unit must be
contained within the context.

A borderline case made possible by this modus operandi consists of defining
units and contexts on the basis of the same segmentation. Indeed since every
segment is contained in itself, nothing keeps us from using a single
segmentation, words for example, and defining units with the key part of
speech and contexts with the key word category:

	__context__

	article

	noun

	verb

	grammatical

	1

	0

	0

	lexical

	1

	1

	0

Orange Textable offers two other ways to define contexts while still using a
single segmentation. The first relies on the notion of a “window” of n
segments that we progressively “slide” from the beginning to the end of the
segmentation. In our example, by applying this principle to the letters
segmentation and by setting the window size to 11 segments, we thus define
the following contexts:

	a simple exam

	simple examp

	imple exampl

	mple example

By otherwise defining the units based on the letter category annotations for
example, we thus obtain the following counts (where the contexts are
represented by their successive positions):

	__context__

	vowel

	consonant

	1

	5

	6

	2

	4

	7

	3

	4

	7

	4

	4

	7

The last context specification mode that Count offers and which involves a
single segmentation consists of defining the contexts as n segments
immediately to the left and/or to the right of each segment. For example,
based on the letter category annotations of segmentation letters, defining
the contexts as the two segments immediately on the left and on the right of
the segment results in the following contingency table (where the ‘+’ symbol
separates the successive segments of the context and the underscore symbol ‘_’
separates the left and right parts of the context):

	__context__

	consonant

	vowel

	vowel+consonant_consonant

	2

	2

	consonant+vowel_consonant

	2

	1

	consonant+consonant_vowel

	2

	1

	vowel+vowel_vowel

	1

	0

Such a table notably indicates that in a context composed, on the left, of a
vowel+consonant sequence and, on the right, of a consonant (for example
ex_m or am_l), we have twice observed a vowel and thrice a consonant. A
particular case of this type of table is that of the transition matrix that
defines a Markov chain, where we only consider the context on the left of
the segments:

	__context__

	vowel

	consonant

	vowel

	o

	5

	consonant

	5

	4

Let us also note that context specification, unlike unit specification, is
optional. Indeed, it is always possible to globally count the frequency of
segmentation units and thus produce a table that only contains a single row
corresponding to the whole concerned segmentation (thus letters, in the
following example):

	__context__

	a

	s

	i

	m

	p

	l

	e

	x

	__global__

	2

	1

	1

	2

	2

	2

	3

	1

Finally, in every scenario considered here, we could also take an interest for
the frequency of the sequences from 2, 3, …, n segments (or n–grams)
rather that to the frequency of isolated segments:

	__context__

	as

	si

	im

	mp

	pl

	le

	ex

	xa

	am

	__global__

	1

	1

	1

	2

	2

	2

	1

	1

	1

After having thus outlined the range of contingency table types that the
Count widget can produce, we can take a look at its interface (see
figures 1 to 4). It contains two
separate sections for unit definition (Units) and context definition
(Contexts).

[image: Count widget in mode "No context"]

Figure 1: Count widget (No context mode).

In the Units section, the Segmentation drop-down menu allows the user
to select among the input segmentations the one whose segment types will be
counted. The Annotation key menu displays the annotation keys associated
to the chosen segmentation, if any; if one of the keys is selected, the
corresponding annotation values will be counted; if on the other hand the
value (none) is selected, the content of the segments will be counted. The
Sequence length drop-down menu allows the user to indicate if isolated
segments or segment n–grams should be counted; in this latter case, the
(optional) string specified in the Intra sequence delimiter text field
will be used to separate the content or the annotation value corresponding to
each segment in the column headers. 3

The Contexts section is available in several variants, depending on the
selected value in the Mode drop-down menu. The latter allows the user to
choose between the different ways of defining contexts described earlier. The
No context mode (see figure 1) corresponds to the case
where units are counted globally in the whole segmentation specified in the
Units section (to which we will refer by the term unit segmentation).

The Sliding window mode (see figure 2) implements the
notion of a “sliding window” introduced earlier. Typically it allows the user
to observe the evolution of frequency throughout the unit segmentation. The
only parameter is the window size (in number of segments), defined by the
Window size cursor.

[image: Count widget in mode "Sliding window"]

Figure 2: Count widget (Sliding window mode).

[image: Count widget in mode "Left-right neighborhood"]

Figure 3: Count widget (Left–right neighborhood mode).

[image: Count widget in mode "Containing segmentation"]

Figure 4: Count widget (Containing segmentation mode).

The Left–right neighborhood mode (see figure 3)
allows the user to specify context types based on the n segments immediately
to the left and/or right of each segment; this mode notably allows the user to
build a Markov chain transition matrix. The Left context size and Right
context size parameters determine the number of segments taken into
consideration in each part of the context. The Unit position marker text
field allows the user to specify the (possibly empty) character chain to
insert in-between the left and right parts of the context in the row headers.
The checkbox (Treat distinct strings as contiguous) enables the user to to choose
if separate strings should be treated as if they were actually contiguous, so that
the end of each string is adjacent to the beginning of the next string.

Finally, the Containing segmentation mode (see figure 4) corresponds to the case where contexts are defined by the
segment types that appear in a segmentation (which can be that of the units or
another). This segmentation, that we will call context segmentation by
analogy, is selected among the input segmentations by means of the
Segmentation drop-down menu. The Annotation key menu displays the
annotation keys associated with the context segmentation, if any; if one of
the keys is selected, the corresponding annotation value types will constitute
the row headers; if however the value (none) is selected, the content of
the segments will be exploited. The Merge contexts checkbox enables the
program to globally count the units in the whole context segmentation.

Below the Send button, the user finds indications such as the sum of frequencies in the output table, or
the reasons why not table is emitted (no input data or total frequency is
zero).

The Compute button triggers the emission of a table in the internal format
of Orange Textable, to the output connection(s). When it is selected, the
Compute automatically checkbox disables the button and the widget attempts
to automatically emit a segmentation at every modification of its interface or
when its input data are modified (by deletion or addition of a connection, or
because modified data is received through an existing connection).

Messages

Information

	Data correctly sent to output: total count is <n>.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Compute’ when ready.

	Settings and/or input have changed but the Compute automatically
checkbox has not been selected, so the user is prompted to click the
Compute button (or equivalently check the box) in order for computation
and data emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings below).

Warnings

	Resulting table is empty.

	No table has been emitted because the widget instance couldn’t find a
single element in its input segmentation(s). A likely cause for this
problem (when using the Containing segmentation mode) is that the unit
and context segmentations do not refer to the same strings, so that the
units are in effect not contained in the contexts. This is typically a
consequence of the improper use of widgets Preprocess and/or
Recode (see Caveat).

Examples

	Getting started: Counting segment types

	Getting started: Counting in specific contexts

	Cookbook: Count unit frequency

	Cookbook: Count occurrences of smaller units in larger segments

	Cookbook: Count transition frequency between adjacent units

	Cookbook: Examine the evolution of unit frequency along the text

See also

	Reference: Convert widget (section “Table formats”)

Footnotes

	1

	By convention, we do not indicate here the string index associated with
each segment but only its start and end positions, along with the
various annotation values associated with it; moreover, for the sake of
readability, we do indicate the content of each segment, though it is
not formally part of the segmentation (but rather of the string to
which the segmentation refers).

	2

	The first column header, __context__, is a name predefined by Orange
Textable.

	3

	The same character string will be inserted between the successive
segments that build up the left and/or right context if the
Left–right neighborhood mode is selected.

Length

[image: _images/Length_54.png]
Compute the (average) length of segments.

Signals

Inputs:

	Segmentation (multiple)

Segmentation whose segments constitute the units of length measurement,
the contexts whose lengths will be measured, or the units over which length
will be averaged

Outputs:

	Textable table

Table in the internal format of Orange Textable

Description

This widget inputs one or several segmentation, measures the length of one
(eventually within the segments defined by another segmentation), and sends
the results in table format. It also allows the user to calculate the average
length of segments of a segmentation based on the units defined by another
segmentation.

The tables produced by the Length widget have at least 2 columns, and at
most 4. The first column contains the headers corresponding to the contexts –
which are essentially defined in the same way as in the Count widget.
The second column gives the length indications (in which case the header is
__length__) or the average length (header __length_average__). In the
latter case, the third column may then contain the corresponding standard
deviations if their display is required by the user (header
__length_std_deviation__), and the last column will indicate the number of
elements on which the average calculation is done (header __length_count__).

To take a simple example, consider two segmentations of the string a simple
example 1:

	label = words

	content

	start

	end

	part of speech

	word category

	a

	1

	1

	article

	grammatical

	simple

	3

	8

	adjective

	lexical

	example

	10

	16

	noun

	lexical

	label = letters (extract)

	content

	start

	end

	letter category

	a

	1

	1

	vowel

	s

	3

	3

	consonant

	i

	4

	4

	vowel

	…

	…

	…

	…

	e

	16

	16

	vowel

Essentially here two basic configurations are considered. The first is when we
are simply interested in the length of a given segmentation, for example
letters:

	__context__

	__length__

	__global__

	14

In what follows, we will designate with the terms units of measurement the
segments whose count is interpreted as a length measure, namely in this
example the segments of the segmentation letters.

The second basic configuration is when we wish to know the average length of
the segments of a segmentation, for example words, in terms of measure
units belonging to another segmentation (here letters):

	__context__

	__length_average__

	__length_std_deviation__

	__length_count__

	__global__

	4.66666650772

	2.62466931343

	3

In this case, we will name averaging units the segments whose lengths are
measured and averaged. Note that the average length calculation presupposes
that at least one measure unit is contained within the averaging unit, in
the sense that the following three conditions are met: (a) the segment
corresponding to the unit and the context are both be associated to the same
string, (b) the initial position of the unit segment in the string is higher
or equal to that of the context segment, and (c) conversely the final position
of the unit is lower or equal to that of the context.

These two elementary configurations (length measurement and average length
calculation) can then be combined with two ways of specifying contexts – i.e.
two ways of defining table rows. The first mode consists of defining the
contexts based on the content or the annotations of a given segmentation; for
example, here is the length of the words segments (contexts) in terms of
those of letters (units of measurement):

	__context__

	__length__

	a

	1

	simple

	6

	example

	7

It should be noted that the segment types define the row headers, as
illustrated in the following example, where the same segmentations are used
but the contexts are defined by the annotation values associated with the key
word type:

	__context__

	__length__

	grammatical

	1

	lexical

	13

The average length calculation is also applicable when the contexts are
defined on the basis of a segmentation. In this case, we will generally use
three different segmentations to define the units of measurement, the
averaging units, and the contexts; for example, it could be to calculate the
average length of words (in number of letters) in different texts. To stay in
the frame of our example based on only two segmentations, we can exploit the
fact that all segments are contained in themselves and calculate the average
length of words (in number of letters) depending on the word types
annotations (in other words we here use a single segmentation to determine the
contexts and the averaging units):

	__context__

	__length_average__

	__length_std_deviation__

	__length_count__

	grammatical

	1

	0

	1

	lexical

	6.5

	0.5

	2

The second context specification mode lies on the concept of a “window” of n
segments that we progressively slide from the beginning to the end of the
segmentation. For example, by setting the window size to 2 segments, we can
examine the average length of words (in number of letters) in successive
bigrams of the words segmentation (identified by their position):

	__context__

	__length_average__

	__length_std_deviation__

	__length_count__

	1

	3.5

	2.5

	2

	2

	6.5

	0.5

	2

By construction, each cell of the column __length_count__ will then contain
the same value, or the window size. Based on this observation, it is rather
easy to convince oneself that this latter context specification mode only
makes sense when we are interested in the evolution of an average length
throughout a segmentation.

We now move on to the presentation of the widget interface (see figure 1). It contains three separate sections for the specification of
the units of measurement (Units), of the averaging units (Averaging),
and of the contexts (Contexts).

The Units section only contains a single drop-down menu (Segmentation)
used to select among the input segmentation the one whose segments will
provide the units of measurement.

In the Averaging section, the Average over segmentation checkbox
triggers the calculation of the average length. The drop-down menu on the
right allows the user to select the segmentation whose segments will
constitute the averaging units. The Compute standard deviation checkbox
allows the user to calculate, other than the average length, its standard
deviation. It should be noted that for large segmentations, this option is
likely to spectacularly extend the calculation time.

[image: Length widget in mode "No context"]

Figure 1: Length widget (No context mode).

The Contexts section is available in several variants depending on the
value selected in the Mode drop-down menu. This latter option allows the
user to choose among the context specification modes described above. The No
context mode corresponds to the case where the length measurement or the
average length calculation are globally applied to the entire segmentation
that defines the units of measurement (specified in the Units section).

The Sliding window mode (figure 2) implements the
notion of a “sliding window” introduced above. It allows the user to observe
the evolution of the average length throughout the averaging unit
segmentation. The only parameter is the size of the window (in number of
segments), set by means of the Window size cursor.

[image: Length widget in mode "Sliding window"]

Figure 2: Length widget (Sliding window mode).

[image: Length widget in mode "Containing segmentation"]

Figure 3: Length widget (Containing segmentation mode).

Finally, the Containing segmentation mode (see figure 3) corresponds to the case where the contexts are defined by the
segment types appearing in a segmentation (that will most often be distinct
from the segmentation providing the units of measurement and the averaging
units). This segmentation is selected among the input segmentation by means of
the Segmentation drop-down menu. The Annotation key menu shows the
possible annotation keys associated to the selected segmentation; if one of
these keys is selected, the corresponding types of annotation values will
constitute the row headers; if on the other hand the value (none) is
selected, the content of the segments will be used. The Merge contexts
checkbox allows the user to measure the length or to calculate the average
length globally in the entire segmentation that defined the contexts.

The Send button triggers the emission of a table in the internal format
of Orange Textable to the output connection(s). When it is selected, the
Send automatically checkbox disables the button and the widget attempts
to automatically emit a segmentation at every modification of its interface or
when its input data are modified (by deletion or addition of a connection, or
because modified data is received through an existing connection).

The informations below the Send button indicate if a table has been correctly emitted, or the
reasons why no table is emitted (no input data).

Messages

Information

	Data correctly sent to output.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically
checkbox has not been selected, so the user is prompted to click the
Send button (or equivalently check the box) in order for computation
and data emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings below).

Warnings

	Resulting table is empty.

	No table has been emitted because the widget instance couldn’t find a
single element in its input segmentation(s). A likely cause for this
problem (when using the Containing segmentation mode) is that the unit
and context segmentations do not refer to the same strings, so that the
units are in effect not contained in the contexts. This is typically a
consequence of the improper use of widgets Preprocess and/or
Recode (see Caveat).

Footnotes

	1

	By convention, we do not indicate here the string index associated with
each segment but only its start and end positions, along with the
various annotation values associated with it; moreover, for the sake of
readability, we do indicate the content of each segment, though it is
not formally part of the segmentation (but rather of the string to
which the segmentation refers).

Variety

[image: _images/Variety_54.png]
Measure the variety of segments.

Signals

Inputs:

	Segmentation

Segmentation whose segments constitute the units of variety measurement, or
the contexts in which variety will be measured

Outputs:

	Textable table

Table in the internal format of Orange Textable

Description

This widget inputs one or several segmentations, measures the variety of the
segments of one of the segmentations (eventually within the segments defined
by another segmentation), and sends the result in table format; it also allows
the user to calculate the average variety by category (based on the
annotation values of the segments). In order to make these two measures less
dependent on the length of segmentations, it is possible to calculate their
average value on a number of subsamples of fixed size.

The tables produced by the Variety widget have at least 2 columns, and at
most 4. The first column contains the headers corresponding to the contexts
– which are essentially defined in the same way as in the Count and
Length widgets. The second column gives the variety measures and its
header is __variety__, unless resampling has been applied (in which case the
header will be __variety_average__). In the latter case, the third column
will contain the corresponding standard deviation (header
__variety_std_deviation__) and the last column the number of subsamples
(header __variety_count__).

To take a simple example, consider two segmentations of the string a simple
example 1:

	label = words

	content

	start

	end

	part of speech

	word category

	a

	1

	1

	article

	grammatical

	simple

	3

	8

	adjective

	lexical

	example

	10

	16

	noun

	lexical

	label = letters (extract)

	content

	start

	end

	letter category

	a

	1

	1

	vowel

	s

	3

	3

	consonant

	i

	4

	4

	vowel

	…

	…

	…

	…

	e

	16

	16

	vowel

The most elementary measure made by the widget is that of the number of types
or variety. For example, for the segmentation letters, by defining the
units based on the content of the segments:

	__context__

	__variety__

	__global__

	8

Naturally, it is possible to define types based on the values associated to an
annotation key, for example letter category:

	__context__

	__variety__

	__global__

	2

It is also possible to weigh the variety according to the frequency of
types. To do this, we can calculate the perplexity of the segment
distribution, that is to say the exponential of the entropy on this
distribution. This measure is equal to the variety only if the segment types
have a uniform frequency; it decreases and tends towards 0 as the segment
distribution departs from uniformity and gradually becomes deterministic. As
an example, here is the perplexity for letter category:

	__context__

	__variety__

	__global__

	1.97962633005

The difference observed between the variety with or without weighing (1.96 vs
2) shows the deviation from uniformity in the distribution of letter
categories in this example.

Rather than looking at the variety (weighed or not) of the segment types in
general, we can look at their average variety within a category. For
example, we can ask what is the average variety of letters depending on the
letter category:

	__context__

	__variety__

	__global__

	4.0

On average, in our example, a type of letter (consonant or vowel) is thus
represented by 4.0 distinct letters – as long as we give the same weight to
each category. The alternative consists of weighing the categories according
to their frequency, which would result in our case in giving more weight to
the variety of consonants (whose frequency is 9) than to that of the vowels
(whose frequency is 6) in our average calculation:

	__context__

	__variety__

	__global__

	4.14285714286

From the increase observed compared to the case where the categories are not
weighed, we can deduce that the number of distinct consonants is higher than
that of the vowels.

To sum up, weighing (or not) the frequencies of units is the basis of the
distinction between variety and perplexity; moreover, in the case where we
calculate the average variety/perplexity per category, it is possible to weigh
(or not) by the frequency of categories.

The different variety measures presented above can then be combined with the
same context (i.e. table rows) specification modes as in the
Length widget: the first mode consists in defining the contexts based
on the content or the annotations of a given segmentation; the second lies on
the concept of a “window” of n segments that we progressively “slide” from
the beginning to the end of the segmentation.

All variety measures (weighed or not, simple or by category) are sensitive to
the sample size, which in our case means the segmentation length. As such,
they are in principle not directly comparable among/between of different
lengths. Consider for example the (unweighted) variety of letters (units) in
words (contexts):

	__context__

	__variety__

	a

	1

	simple

	6

	example

	6

To reduce the effect of this dependence to the segmentation length, it is
possible to adopt the following strategy: draw a set number of subsamples in
each segmentation to compare and report the average variety by subsample. For
example, by setting the size of the subsamples to 2 segments, and by drawing
100 subsamples for each word, we obtain the following results: 2

	__context__

	__variety_average__

	__variety_std_deviation__

	__variety_count__

	a

	—

	—

	—

	simple

	1.59

	0.491833305094

	100

	example

	1.52

	0.499599839872

	100

Here, we can see that the variety average in simple is very slightly higher
than in example because simple is a shorter word and has no repeating
letters. Moreover, since the article a is only one letter, our operation
cannot build subsamples of 2 letters to compute and report their average
variety, hence the missing values for variety average, standard deviation and
count.

[image: variety widget mode no context]

Figure 1: Variety widget.

We now move on to the presentation of the widget interface (see figure 1). It has four separate sections, for unit specification
(Units), category specification (Categories), context
specification (Contexts), and resampling parameters (Resampling).

In the Units section, the Segmentation drop-down menu allows the user
to select among the input segmentations the one whose segments will be the
basis of the variety calculation. The Annotation key menu shows the
possible annotation keys associated to the chosen segmentation; if one of
these keys is selected, the corresponding annotation values will be used; if
on the other hand the value (none) is selected, the content of the segments
will be used. The Sequence length drop-down menu allows the user to
indicate if the widget should consider the isolated segments or the
n–grams. Finally, the Weigh by frequency checkbox allows the user to
enable the weighing of the units by their frequency (thus the perplexity
measure rather than the variety). Checking the Dynamically adjust subsample size box
permits a more robust variety estimation. This calculation uses the RMSP subsample size
adjustment method described in Xanthos and Guex 2015.

In the Categories section, the Measure diversity per category checkbox
triggers the calculation of the average diversity by category. The
Annotation key drop-down menu allows the user to select the annotation
key whose values will be used for the category definitions. The Weigh by
frequency checkbox allows the user to enable the weighing by the category
frequency.

The Contexts section is available in several variants depending on the
value selected in the Mode drop-down menu. The latter allows the user to
choose among the context specification modes described above. The No
context mode corresponds to the case where the variety measure is applied
globally to the entire unit segmentation.

The Sliding window mode (see figure 2) implements
the notion of a “sliding window” introduced earlier. It allows the user to
observe the evolution of variety throughout the segmentation. The only
parameter is the window size (in number of segments), set by means of the
Window size cursor.

[image: Variety widget in mode "Sliding window"]

Figure 2: Variety widget (Sliding window mode).

[image: Variety widget in mode "Containing segmentation"]

Figure 3: Variety widget (Containing segmentation mode).

Finally, the Containing segmentation mode (see figure 3) corresponds to the case where the contexts are defined by the
segment types appearing in a given segmentation. This segmentation is selected
among the input segmentations by means of the Segmentation drop-down menu.
The Annotation key menu shows the possible annotation keys associated to
the selected segmentation; if one of these keys is selected, the corresponding
annotation values will constitute the row headers; if on the other hand the
value (none) is selected, the content of the segments will be used. The
Merge contexts checkbox allows the user to measure the variety globally in
the entire segmentation that defines the contexts.

In the Resampling section, the Apply resampling checkbox allows the
user to enable the calculation of the average diversity in subsamples of
fixed size. The number of segments by subsample is determined by the
Subsample size cursor, and the number of subsamples with
Number of subsamples.

The Send button triggers the emission of a table in the internal format
of Orange Textable, to the output connection(s). When it is selected, the
Send automatically checkbox disables the button and the widget attempts
to automatically emit a segmentation at every modification of its interface or
when its input data are modified (by deletion or addition of a connection, or
because modified data is received through an existing connection).

The informations given under the Send button indicate if a table has been correctly emitted, or the
reasons why no table is emitted (no input data, typically).

Messages

Information

	Data correctly sent to output.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically
checkbox has not been selected, so the user is prompted to click the
Send button (or equivalently check the box) in order for computation
and data emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings below).

Warnings

	Resulting table is empty.

	No table has been emitted because the widget instance couldn’t find a
single element in its input segmentation(s). A likely cause for this
problem (when using the Containing segmentation mode) is that the unit
and context segmentations do not refer to the same strings, so that the
units are in effect not contained in the contexts. This is typically a
consequence of the improper use of widgets Preprocess and/or
Recode (see Caveat).

Footnotes

	1

	By convention, we do not indicate here the string index associated with
each segment but only its start and end positions, along with the
various annotation values associated with it; moreover, for the sake of
readability, we do indicate the content of each segment, though it is
not formally part of the segmentation (but rather of the string to
which the segmentation refers).

	2

	The example has an instructive purpose; in practice we will typically
use a clearly higher subsample size, for example 50 segments or more.

Cooccurrence

[image: _images/Cooccurrence_54.png]
Measure the cooccurrence of segments in documents.

Signals

Inputs:

	Segmentation (multiple)

Segmentation whose segments constitute the units subject to measurement of
their cooccurrence or the contexts in which unit cooccurrence will be
measured

Outputs:

	Pivot Crosstab

Table displaying the cooccurrence of units in the defined context

Description

This widget inputs one or several segmentations, measures the number of
documents in which the input segments occur simultaneously, and sends the result
in the form of a cooccurrence matrix 1.

The cooccurrence matrix produced by this widget is of IntPivotCrosstab type,
a subtype of the generic Table format (see Convert widget, section
Table formats). Since this table is a
cooccurrence matrix, both rows and columns correspond to unit types.
The cell at the intersection of a given column and row represents the number of
documents (context types) in which these two unit types occur
simultaneously. As the measure of cooccurrence represents absolute frequency,
the resulting table contains integer numbers, and as such it is of
IntPivotCrosstab type, a subclass of PivotCrosstab.

To take a simple example, consider two segmentations of the string a simple
example 2:

	label = words

	content

	start

	end

	part of speech

	word category

	a

	1

	1

	article

	grammatical

	simple

	3

	8

	adjective

	lexical

	example

	10

	16

	noun

	lexical

	label = letters (extract)

	content

	start

	end

	letter category

	a

	1

	1

	vowel

	s

	3

	3

	consonant

	i

	4

	4

	vowel

	…

	…

	…

	…

	e

	16

	16

	vowel

Typically, we could define unit types based on the content of the segments
of the letters segmentation.

As for the context types, there are two distinct forms
of contexts for measuring the cooccurrence of the units:
* Sliding window* Containing segmentation

Sliding window relies on the notion of a “window” of n segments that we
progressively “slide” from the beginning to the end of the segmentation. In our
example, by applying this principle to the letters segmentation and by setting
the window size to 3 segments, we thus define the following contexts:

	a si

	sim

	imp

	mpl

	ple

	le e

	e ex

	exa

	xam

	amp

	mpl

	ple

Considering the letter segmentation as that of the unit types, we would obtain
the following cooccurrence matrix 3:

	__unit__

	a

	s

	i

	m

	p

	l

	e

	x

	a

	4

	1

	1

	2

	1

	0

	1

	2

	s

	1

	2

	2

	1

	0

	0

	0

	0

	i

	1

	2

	3

	2

	1

	0

	0

	0

	m

	2

	1

	2

	6

	4

	2

	0

	1

	p

	1

	0

	1

	4

	6

	4

	2

	0

	l

	0

	0

	0

	2

	4

	5

	3

	0

	e

	1

	0

	0

	0

	2

	3

	5

	2

	x

	2

	0

	0

	1

	0

	0

	2

	3

Alternatively, we could consider the annotation values of the units instead of
their content. For example, by defining units based on the annotations
associated to the key letter category in the letters segmentation, and
choosing the mode Sliding window for the context with the window size of 3
(see figure 1), we would obtain the following
cooccurrence
matrix:

	__unit__

	vowel

	consonant

	vowel

	10

	10

	consonant

	10

	12

The mode Containing segmentation consists in measuring the cooccurrence of
units in context defined by another segmentation. In the above example we
consider letter as the segmentation for unit types and word as the
segmentation for context types, and thus the following cooccurrence matrix will
be obtained and is symmetric by definition:

	__unit__

	a

	s

	i

	m

	p

	l

	e

	x

	a

	2

	0

	0

	1

	1

	1

	1

	1

	s

	0

	1

	1

	1

	1

	1

	1

	1

	i

	0

	1

	1

	1

	1

	1

	1

	1

	m

	1

	1

	1

	2

	2

	2

	2

	1

	p

	1

	1

	1

	2

	2

	2

	2

	1

	l

	1

	1

	1

	2

	2

	2

	2

	1

	e

	1

	1

	1

	2

	2

	2

	2

	1

	x

	1

	0

	0

	1

	1

	1

	1

	1

Each cell at the above table represents the number of words (segments of the
context types) in which the unit in the column and the unit in the row are
used simultaneously. For example, “2” in the fifth column and forth row, shows
that there are two words in which p and m occur together.

In the Containing segmentation mode, it is also possible to measure the
cooccurrence of units belonging to distinct segmentations. For instance this
would enable us to know how many times a given vowel and a given consonant occur
simultaneously in each word. By ticking the Secondary units checkbox
in the interface of the widget, we will be able to define a segmentation for
secondary unit types. In this case, the resulting cooccurrence matrix will no
longer be symmetric. Therefore, in the above example, vowels as the primary
units segmentation constitute the rows, and consonants as the secondary units
segmentation constitute the columns of the resulting cooccurrence matrix
(see figure 2):

	__unit__

	s

	m

	p

	l

	x

	a

	0

	1

	1

	1

	1

	i

	1

	1

	1

	1

	0

	e

	1

	2

	2

	2

	1

As mentioned in the Sliding window mode, it is always possible to measure
the cooccurrence of the annotation values of the units (primary and secondary)
and those of the contexts instead of the content of segments. In the case
of the above example with the secondary units, the resulting crosstab consists
of only one cell indicating the number of words in which every letter with
vowel and every letter with consonant annotation value have occurred at the
same time:

	__unit__

	consonant

	vowel

	2

Note that it is up to the user to provide a coherent definition of the units
and contexts. In general, there are three conditions to be met in this
respect: (a) the segment corresponding to the unit and the context are both
associated to the same string, (b) the initial position of the unit segment
in the string is higher or equal to that of the context segment, and
(c) conversely the final position of the unit is lower or equal to that of the
context. In short, the unit must be contained within the context.

It is also noteworthy that in order to measure the cooccurrence, it is by
definition necessary to specify a context. The context is set to the Sliding
window mode by default.

Finally, in every scenario considered here, we could also take an interest for
the cooccurrence of sequences of 2, 3, …, n segments (or n–grams) rather
than for the frequency of isolated segments. The cooccurrence matrix of
bigrams in Sliding window (size 3) is illustrated below:

	__unit__

	as

	si

	im

	mp

	pl

	le

	ee

	ex

	xa

	am

	as

	1

	1

	0

	0

	0

	0

	0

	0

	0

	0

	si

	1

	2

	1

	0

	0

	0

	0

	0

	0

	0

	im

	0

	1

	2

	1

	0

	0

	0

	0

	0

	0

	mp

	0

	0

	1

	4

	2

	0

	0

	0

	0

	0

	pl

	0

	0

	0

	2

	4

	2

	0

	0

	0

	0

	le

	0

	0

	0

	0

	2

	3

	1

	0

	0

	0

	ee

	0

	0

	0

	0

	0

	1

	2

	1

	0

	0

	ex

	0

	0

	0

	0

	0

	0

	1

	2

	1

	0

	xa

	0

	0

	0

	0

	0

	0

	0

	1

	2

	1

	am

	0

	0

	0

	1

	0

	0

	0

	0

	1

	2

Hereafter the interface of the widget will be introduced (see
figures 1 to 4). It
contains three separate sections for unit definition (Units and Secondary
units) and context definition (Contexts).

[image: Cooccurrence widget in the default mode("Sliding window")]

Figure 1: Cooccurrence widget (Sliding window mode as the default mode).

In the Units section, the Segmentation drop-down menu allows the user
to select among the input segmentations, the one whose segment types will be
subject to the cooccurrence measurement. The Annotation key menu displays
the annotation keys associated to the chosen segmentation, if any; if one of the
keys is selected, the corresponding annotation values will be considered; if on
the other hand the value (none) is selected, the content of the segments
will be taken into consideration. The Sequence length drop-down menu allows
the user to indicate if isolated segments or segment n–grams should be
considered; in the latter case, the (optional) string specified in the Intra
sequence delimiter text field will be used to separate the content or the
annotation value corresponding to each segment in the table headers.

The Secondary units section has almost the same characteristics as the
Units section, except for the fact that there is no Sequence length
menu. This section is by default disabled due to the default mode of the
Contexts section being Sliding window, in which only one unit
segmentation can be considered for the measure of cooccurrence (see
figure 1). When changing the mode to Containing
segmentation, the box becomes automatically enabled (see
figure 2).

[image: Secondary units box of Cooccurrence widget in mode "Sliding window"]

Figure 2: Secondary units box of Cooccurrence widget.

The Contexts section is available in two forms, depending on the
selected value in the Mode drop-down menu. This allows the user to
choose between the two possible ways of defining contexts described earlier.
The Sliding window mode (see figure 3) implements
the notion of a “sliding window” introduced earlier. Typically, it allows the
user to observe the cooccurrence of the unit types with one another throughout
the unit segmentation. The only parameter is the window size (in number of
segments), defined by the Window size cursor, set to 2 by default.

[image: Cooccurrence widget in mode "Sliding window"]

Figure 3: Cooccurrence widget (Sliding window mode).

[image: Cooccurrence widget in mode "Containing segmentation"]

Figure 4: Cooccurrence widget (Containing segmentation mode).

Finally, the Containing segmentation mode (see figure 4) corresponds to the case where contexts are defined by the
segment types that appear in another segmentation. This segmentation is selected
among the input segmentations by means of the Segmentation drop-down menu.
The Annotation key menu displays the annotation keys associated with the
context segmentation, if any; if one of the keys is selected, the corresponding
annotation value types will constitute the row headers; otherwise the value
(none) is selected so that content of the segments will be exploited.

The Send button triggers the emission of a table in the internal format
of Orange Textable, to the output connection(s). When it is selected, the
Send automatically checkbox disables the button and the widget attempts
to automatically emit a segmentation at every modification of its interface or
when its input data are modified (by deletion or addition of a connection, or
because modified data is received through an existing connection).

The informations given below the Send button indicate whether or not the data is correctly sent to the
output table. If not, the respective error message will be given.

Messages

Information

	Data correctly sent to output.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically
checkbox has not been selected, so the user is prompted to click the
Send button (or equivalently check the box) in order for computation
and data emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings below).

Warnings

	Resulting table is empty.

	No table has been emitted because the widget instance couldn’t find a
single element in its input segmentation(s). A likely cause for this
problem (when using the Containing segmentation mode) is that the unit
and context segmentations do not refer to the same strings, so that the
units are in effect not contained in the contexts. This is typically a
consequence of the improper use of widgets Preprocess and/or
Recode (see Caveat).

See also

	Reference: Convert widget (section “Table formats”)

Footnotes

	1

	The definition of cooccurrence may vary depending on the discipline in
which this notion is used. In text analytics, the cooccurrence is the
number of the documents in which two textual units simultaneously occur.
Here by convention, cooccurrence is the dot product of the transposed
term-document matrix with itself, which is symmetric when considering
only one unit type. As a result, and contrary to other definitions, the
diagonal members of the matrix are not zero; rather, they indicate
the document frequency of the corresponding textual unit (i.e. the
number of context types in which it occurs).

	2

	By convention, we do not indicate here the string index associated with
each segment but only its start and end positions, along with the
various annotation values associated with it; moreover, for the sake of
readability, we do indicate the content of each segment, though it is
not formally part of the segmentation (but rather of the string to
which the segmentation refers).

	3

	The first column header, __unit__, is a name predefined by Orange
Textable.

Context

[image: _images/Context_54.png]
Explore the context of segments.

Signals

Inputs:

	Segmentation (multiple)

Segmentation containing the “key segments” whose context will be examined
or the segments which serve to define these contexts.

Outputs:

	Textable table

Table displaying the concordance of key segments or their collocations.

Description

This widget inputs one or several segmentations and outputs concordances
or collocation lists in table format, allowing the user to examine the
contexts in which selected segments appear.

The functioning of this widget lies on the notions of units and contexts, as
all table contruction widgets. The role of the unit segmentation is central;
it defines the key segments whose contexts can be examined by means of the
resulting concordances or lists of collocations.

To take a simple example, consider two segmentations of the string a simple
example 1:

	label = words

	content

	start

	end

	part of speech

	word category

	a

	1

	1

	article

	grammatical

	simple

	3

	8

	adjective

	lexical

	example

	10

	16

	noun

	lexical

	label = letters (extract)

	content

	start

	end

	letter category

	a

	1

	1

	vowel

	s

	3

	3

	consonant

	i

	4

	4

	vowel

	…

	…

	…

	…

	e

	16

	16

	vowel

The simplest case is when a single segmentation is considered; the only way
to define contexts is thus in terms of a given number of neighboring segments.
For example, given the single letters segmentation, we can build the
following concordance:

	__id__

	__pos__

	1L

	__key_segment__

	1R

	1

	1

	—

	a

	s

	2

	2

	a

	s

	i

	3

	3

	s

	i

	m

	4

	4

	i

	m

	p

	5

	5

	m

	p

	l

	6

	6

	p

	l

	e

	7

	7

	l

	e

	e

	8

	8

	e

	e

	x

	9

	9

	e

	x

	a

	10

	10

	x

	a

	m

	11

	11

	a

	m

	p

	12

	12

	m

	p

	l

	13

	13

	p

	l

	e

	14

	14

	l

	e

	—

In this table, the column __id__ gives the index of each key segment (its
position in the table). The column __pos__ indicates the position of each
key segment in the unit segmentation, and in this case this information
duplicates the previous one (we will see below that it is not always the
case). The key segment itself appears in the __key_segment__ column, and its
direct neighbors on the left and the right appear respectively in the columns
1L and 1R.

The number of neighbors shown on the left and right can of course be higher,
just as we can show the annotation values instead of the segment contents
(be it key segments or their neighbors). For example, the following table
gives 2 direct neighbors of each letter by showing their annotation value
for the key letter category:

	__id__

	__pos__

	2L

	1L

	__key_segment__

	1R

	2R

	1

	1

	—

	—

	a

	consonant

	vowel

	2

	2

	—

	vowel

	s

	vowel

	consonant

	3

	3

	vowel

	consonant

	i

	consonant

	consonant

	4

	4

	consonant

	vowel

	m

	consonant

	consonant

	5

	5

	vowel

	consonant

	p

	consonant

	vowel

	6

	6

	consonant

	consonant

	l

	vowel

	vowel

	7

	7

	consonant

	consonant

	e

	vowel

	consonant

	8

	8

	consonant

	vowel

	e

	consonant

	vowel

	9

	9

	vowel

	vowel

	x

	vowel

	consonant

	10

	10

	vowel

	consonant

	a

	consonant

	consonant

	11

	11

	consonant

	vowel

	m

	consonant

	consonant

	12

	12

	vowel

	consonant

	p

	consonant

	vowel

	13

	13

	consonant

	consonant

	l

	vowel

	—

	14

	14

	consonant

	consonant

	e

	—

	—

The particularity of such tables is that they give the context of every
segment of the single considered segmentation. In general, we are
rather interested in certain specific segments, which we can indicate by means
of a distinct segmentation. Supposing that we have, in addition to the
letters segmentation, a segmentation whose label is key_segments and that
contains only the occurrences of letter e (always in the string a simple
example): 2

	content

	start

	end

	letter category

	e

	8

	8

	vowel

	e

	10

	10

	vowel

	e

	16

	16

	vowel

By specifying the key segments with this segmentation and the contexts (here
the neighboring segments) with the letters segmentation, we can then produce
the following table:

	__id__

	__pos__

	2L

	1L

	__key_segment__

	1R

	2R

	1

	7

	consonant

	consonant

	e

	vowel

	consonant

	2

	8

	consonant

	vowel

	e

	consonant

	vowel

	3

	14

	consonant

	consonant

	e

	—

	—

This example of a more typical concordance proves, for that matter, that the
position of the key segment in the table (column __id__) is not
necessarily equal to its position in the segmentation that defined the
contexts (column __pos__).

In the previous examples, the context of each key segment is defined
in the terms of the neighboring segments in a segmentation. Another
possibility is to define the context on the basis of another segmentation
whose segments contain the key segments. To illustrate this
second mode of context characterization, consider the case where units are
specified by the key_segments segmentation, as previously, and the contexts
by the words segmentation:

	__id__

	__pos__

	__left__

	__key_segment__

	__right__

	1

	2

	simpl

	e

	—

	2

	3

	—

	e

	xample

	3

	3

	exampl

	e

	—

This example shows the implications of this change of context specification
mode. Firstly, the resulting table now has a fixed width 3 of 5 columns:
__id__ and __key_segment__ have the same function as before; __pos__
indicates the position of the context segment that contains each key segment
(which allows the user to find and view the context in question with the
Display widget); finally the columns __left__ and __right__
respectively give the left and right part of each context segment containing a
key segment.

Moreover in this case, replacing the segment content with one of its
annotation values would not make much sense. However, it can be useful to
indicate such a value in a separate column, as part of speech in the
following example which also illustrates the possibility of replacing
the content of the key segment with an annotation value (here letter
category):

	__id__

	__pos__

	__left__

	__key_segment__

	__right__

	part of speech

	1

	2

	simpl

	vowel

	—

	adjective

	2

	3

	—

	vowel

	xample

	noun

	3

	3

	exampl

	vowel

	—

	noun

These examples highlight the versatility of the Context widget, whose
possibilities are more diverse than those a basic concordancer typically
offers – at the cost of a more complex application since it generally
involves being able to build and put in relation two or more distinct
segmentations of the analyzed text.

We conclude this overview of the capacities of the widget with the building
of collocation lists. First note that this functionality is here conceived
as a visualization option applicable to a concordance where the context is
defined in terms of the neighboring (rather than containing) segments.
Instead of representing the neighboring segments of each key segment
occurrence, we can in fact build a list of these (types of) segments with an
indication of the attraction or on the contrary repulsion between each of them
and the key segment.

Consider again the example of the concordance presented earlier where the
units are given by the key_segments segmentation and the context by the
letter category annotations values of the letters segmentation:

	__id__

	__pos__

	2L

	1L

	__key_segment__

	1R

	2R

	1

	7

	consonant

	consonant

	e

	vowel

	consonant

	2

	8

	consonant

	vowel

	e

	consonant

	vowel

	3

	14

	consonant

	consonant

	e

	—

	—

The same data enable the program to produce the following collocation list:

	__unit__

	__mutual_info__

	__local_freq__

	__local_prob__

	__global_freq__

	__global_prob__

	consonant

	0.292781749228

	7

	0.7

	8

	0.571428571429

	vowel

	-0.51457317283

	3

	0.3

	6

	0.428571428571

The column __mutual_info__ gives the mutual information (in bits) between
the key segment (here the letter e) and each value of the letter category
annotation that appeared close by (here at a maximum distance of 3 segments)
the key segments. This quantity is the binary logarithm of the ratio of the
probability of the letter category value in question close to the key
segment and its probability in the context segmentation in general.

Thus the consonant type appears 7 times in the surroundings of e
(__local_freq__), on a total of 10 segments that appeared close, hence the
“local” probability of 7/10 = 0.7 (__local_prob__); moreover the same type
appeared 8 times in the whole letters segmentation (__global_freq__), on a
total of 14 segments, hence the “global” probability of 8/14 = 0.57
(__global_prob__). Finally the binary logarithm of 0.7/0.57 = 1.22 is 0.3
bits (__mutual_info__), and this (slightly) positive value reflects the
(weak) attraction between e and the consonant type at a maximum distance
of 3 segments. Conversely, the negative mutual information between e and
vowel shows that these categories are in a rather repulsive relation in the
considered surrounding.

[image: interface of the Context widget]

Figure 1: Interface of the Context widget.

The widget interface (see figure 1) is divided in two
separate sections of unit specification (Units) and context specification
(Contexts). In the Units section, the Segmentation drop-down menu
allows the user to select among the input segmentations the one whose
segments will play the role of key segments. The Annotation key menu shows
the potential annotation keys associated to the chosen segmentation; if one of
the keys is selected the corresponding annotation values will be used; if on
the other hand the value (none) is selected, it will be the content of the
segments. The Separate annotation button, activated only when an
annotation key is selected, enables the user to indicate that the values
associated to this key must appear in a separate column (whose header is the
corresponding key) rather than replace the segment contents in the column
__key_segment__. Note that the two buttons (Annotation key and
Separate annotation) are disabled when the button Use collocation
format is selected.

In the Context section, the Mode menu allows the user to choose
between the two context characterization modes mentioned earlier: in terms of
neighboring segments of the key segment (Neighboring segments) or of
segments containing them (Containing segmentation). In both cases, the
segmentation in question is selected among the input segmentation through the
Segmentation drop-down menu and the Annotation key menu shows the
potential annotation keys associated to this segmentation. If one of these
keys is selected, the display of the corresponding values varies depending on
the Mode used: in Neighboring segments mode, the annotation values
replace the content of the segments in the columns 1R*, 1L, … ; in
Containing segmentation mode, they appear in a separate column whose
header is the corresponding annotation key.

In Neighboring segments mode, the Contexts section also allows the
user to indicate if a limit should be set to the number of neighboring
segments shown for each key segment and where it is set (Max. distance).
The Use collocation format button is used to format the result as a
collocation list (rather than a concordance); when it is selected, the
Min. frequency drop-down menu allows the user to specify the (global)
minimal frequency that the segment type must reach in order to appear in the
list. Checking the Treat distinct strings as contiguous box permits to treat
separate strings as if they were contiguous, so that the end of each string is a
djacent to the beginning of the next string.

[image: Context widget in "Containing segmentation mode"]

Figure 2: Context widget (Containing segmentation mode).

In Containing segmentation mode (see figure 2), the
Contexts section allows the user to specify the maximal number of
characters that appear in the right and left context of the pivot.

The Send button triggers the emission of a table in the internal format
of Orange Textable, to the output connection(s). When it is selected, the
Send automatically checkbox disables the button and the widget attempts
to automatically emit a segmentation at every modification of its interface or
when its input data are modified (by deletion or addition of a connection, or
because modified data is received through an existing connection).

The informations generated below the Send button indicate if a table was correctly emitted, or
the reasons why no table is emitted (typically, because it is empty).

Messages

Information

	Data correctly sent to output.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically
checkbox has not been selected, so the user is prompted to click the
Send button (or equivalently check the box) in order for computation
and data emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings below).

Warnings

	Resulting table is empty.

	No table has been emitted because the widget instance couldn’t find a
single element in its input segmentation(s). A likely cause for this
problem (when using the Containing segmentation mode) is that the unit
and context segmentations do not refer to the same strings, so that the
units are in effect not contained in the contexts. This is typically a
consequence of the improper use of widgets Preprocess and/or
Recode (see Caveat).

See also

	Cookbook: Build a concordance

Footnotes

	1

	By convention, we do not indicate here the string index associated with
each segment but only its start and end positions, along with the
various annotation values associated with it; moreover, for the sake of
readability, we do indicate the content of each segment, though it is
not formally part of the segmentation (but rather of the string to
which the segmentation refers).

	2

	It is typically by means of the Select widget that we could
produce such a segmentation.

	3

	Except in the “pathological” case where no key segment is contained
in the context segment.

Category

[image: _images/Category_54.png]
Build a table with categories defined by segments’ content or annotations.

Signals

Inputs:

	Segmentation (multiple)

Segmentation whose segments constitute the basis for category extraction.

Outputs:

	Textable table

Table displaying the extracted categories

Description

This widget inputs one or several segmentations and outputs a tabulated
representation of categories associated to the segments of one of them;
categories are typically defined on the basis of their annotation values of
segments for a given annotation key, but may also be defined on the basis of
the content of segments.

Typically, tables produced by the Category widget are destined to be
merged (by means of the built-in Merge Data widget of Orange Canvas) with
quantitative tables produced by widgets Count, Length, or
Variety, in order to associate with each row the piece of categorical
information required to train a text classifier (i.e. a system able to
automatically predict the membership of a text to a category based on the
quantitative profile associated with it). Here is an example of a table with
this structure, where the second column would have been constructed by an
instance of Category, and the columns to its right by an instance of
Count:

	__context__

	__category__

	noun

	verb

	…

	text1

	news

	35

	12

	…

	text2

	news

	20

	8

	…

	text3

	poetry

	27

	18

	…

	…

	…

	…

	…

	…

The tables produced by this widget only contain two columns. The first
(header __context__) contains the headers corresponding to the
contexts – which are essentially defined in the same way as with the
Containing segmentation mode of widgets Count, Length, and
Variety: by the segment types appearing in a segmentation. The second
column (header __category__) contains the annotation(s) associated
with each segment type.

To take a simple example, consider two segmentations of the string a simple
example 1:

	label = words

	content

	start

	end

	part of speech

	word category

	a

	1

	1

	article

	grammatical

	simple

	3

	8

	adjective

	lexical

	example

	10

	16

	noun

	lexical

	label = letters (extract)

	content

	start

	end

	letter category

	a

	1

	1

	vowel

	s

	3

	3

	consonant

	i

	4

	4

	vowel

	…

	…

	…

	…

	e

	16

	16

	vowel

Based on the latter segmentation, we can produce the following table, giving
the annotation value associated with the key letter category for each
distinct letter:

	__context__

	__category__

	a

	vowel

	s

	consonant

	i

	vowel

	m

	consonant

	p

	consonant

	l

	consonant

	e

	vowel

	x

	consonant

In this illustration, each letter is only associated to a single category. In
a more general case, the contexts can be associated to several categories;
for example, if the contexts are defined based on the word category
annotation of the words segmentation and the extracted categories are
defined as the segment contents of the letters segmentation:

	__context__

	__category__

	grammatical

	a

	lexical

	e-m-l-p-a-i-s-x

In this case, the user will have to choose (a) the order (frequential or
ASCII-betical) in which the multiple values will be sorted and (b) whether
they should all be shown or only the first (in the selected order).

The widget interface (see figure 1) has three
separate sections, for unit specification (Units), for multiple values
processing specification (Multiple Values), and for context specification
(Contexts).

In the Units section, the Segmentation drop-down menu allows the user
to select among the input segmentations the one whose segments will be
examined to determine the categories. The Annotation key menu shows the
possible annotation keys associated to the chosen segmentation; if one of
these keys is selected, the corresponding annotation values will be used; if
on the other hand the value (none) is selected, the content of the
segments will be used. The Sequence length drop-down menu allows the user
to indicate if the widget should consider the isolated segments or the
n–grams of segments. In this latter case, the (optional) string specified
in the Intra-sequence delimiter text field will be used to separate the
content or the annotation value corresponding to each individual segment.

[image: interface of the Category widget]

Figure 1: Interface of the Category widget.

In the Multiple Values section, the Sort by drop-down menu allows the
user to select the sorting criteria of multiple values, namely either the
frequency (Frequency) or the ASCII order (ASCII). The Sort in
reverse order checkbox reverses the sorting order, and the Keep only first
value checkbox allows the program to retain only the first value (in the
selected order). The Value delimiter field is used to indicate the
character string to insert in-between multiple values.

Unlike other table contruction widgets , here the context specification can
only be done in relation to a segmentation containing the unit segmentation
(thus the equivalent of the Containing segmentation mode of widgets
Count, Length, and Variety:). This segmentation is
selected among the input segmentation by means of the Segmentation
drop-down menu. The Annotation key menu shows the possible annotation
keys associated to the selected segmentation; if one of these keys is
selected, the corresponding annotation values will will constitute the row
headers; if on the other hand the value (none) is selected, the content of
the segments will be used.

The Send button triggers the emission of a table in the internal format
of Orange Textable, to the output connection(s). When it is selected, the
Send automatically checkbox disables the button and the widget attempts
to automatically emit a segmentation at every modification of its interface or
when its input data are modified (by deletion or addition of a connection, or
because modified data is received through an existing connection).

The informations generated below the Send button indicate if a table has been correctly emitted, or the
reasons why no table is emitted (no input data, typically).

Messages

Information

	Data correctly sent to output.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically
checkbox has not been selected, so the user is prompted to click the
Send button (or equivalently check the box) in order for computation
and data emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings below).

Warnings

	Resulting table is empty.

	No table has been emitted because the widget instance couldn’t find a
single element in its input segmentation(s). A likely cause for this
problem (when using the Containing segmentation mode) is that the unit
and context segmentations do not refer to the same strings, so that the
units are in effect not contained in the contexts. This is typically a
consequence of the improper use of widgets Preprocess and/or
Recode (see Caveat).

Footnotes

	1

	By convention, we do not indicate here the string index associated with
each segment but only its start and end positions, along with the
various annotation values associated with it; moreover, for the sake of
readability, we do indicate the content of each segment, though it is
not formally part of the segmentation (but rather of the string to
which the segmentation refers).

Conversion/export widgets

The widgets of this category serve diverse purposes unified by the notion
of “conversion”. Convert takes as input tabular data in Orange Textable
format and converts them to other formats, in particular the Table format
appropriate for further processing within Orange Canvas; Convert also
makes it possible to apply various standard transforms to a table, such as
sorting, normalizing, etc., as well as to export its contents in tab-delimited
text format. Message takes as input a segmentation containing data in
a specific JSON format (see Reference: JSON im-/export format) and converts them to a “message” that can be used to control
the behavior of other widgets.

	Convert

	Message

Convert

[image: _images/Convert_54.png]
Convert, transform, or export Orange Textable tables

Signals

Inputs:

	Textable Table

Table in the internal format of Orange Textable.

Outputs:

	Orange Table (default)

Data in the standard Table format of Orange Canvas (possibly transformed).

	Textable Table

Table in the internal format of Orange Textable (possibly transformed).

	Segmentation

Segmentation containing the output table in tab-delimited format.

Description

Convert, inputs data in the internal format of Orange Textable and enables
the user to modify them (sorting, normalization, etc.), to convert them to
other formats, in particular the standard Table format of Orange Canvas
(suitable for further processing within Orange Canvas), or to export them
in tab-delimited text format (either to a file or to the clipboard).

Table formats

The table representation format of Orange Canvas (Table type) presents
compatibility issues with Unicode encoded data. Since this encoding is
emerging as the most widely used standard for languages of the world, Orange
Textable provides its own Unicode-friendly table representation format.

Widgets Count, Length, Variety, Category, and
Context) thus produce tables in Orange Textable format. In order to be
manipulated by the numerous tabulated data processing widgets offered by
Orange Canvas, these data must be converted to the standard Table format of
Orange Canvas (and to an encoding supported by this latter format).

Note that the internal Orange Textable Table type subdivides in several
subtypes. In particular, the contingency tables (see Count widget)
belong to the Crosstab subtype which itself subdivides in PivotCrosstab,
FlatCrosstab, and WeightedFlatCrosstab. These three subtypes are
equivalent with regard to the information they allow the user to store, and
the easiest way to understand what differentiates them is to see an example.

Consider the following contingency table, of IntPivotCrosstab 1 type
(such as produced by the Count widget):

	__context__

	unit1

	unit2

	context1

	1

	3

	context2

	2

	1

Here is the same information converted in FlatCrosstab format:

	__id__

	__unit__

	__context__

	1

	unit1

	context1

	2

	unit2

	context1

	3

	unit2

	context1

	4

	unit2

	context1

	5

	unit1

	context2

	6

	unit1

	context2

	7

	unit2

	context2

This representation contains three columns carrying the headers __id__,
__unit__ and __context__, and a number of rows equal to the total count of
the contingency table. It is the standard way of encoding a contingency table
in Orange Canvas, and it is required by widgets such as Correspondence
Analysis (after conversion to the Table type defined by Orange Canvas).

The WeightedFlatCrosstab format produces a more compact representation by
keeping only one copy of each distinct unit–context pair and by adding a
column __count__ to save information on the number of repetition of each
pair:

	__id__

	__unit__

	__context__

	__weight__

	1

	unit1

	context1

	1

	2

	unit2

	context1

	3

	3

	unit1

	context2

	2

	4

	unit2

	context2

	1

This format is sometimes used to represent contingency tables in third-party
data analysis software. It is often called “sparse” matrix format.
format.

Output channels

Regardless of the selected output table format (or the transforms that have
been applied to the data, see Advanced interface below), the Convert
widget emits data on three distinct output channels:

	The default output channel (Orange Table) emits data converted to
standard Table format of Orange Canvas; it will typically be used for
passing them to built-in Orange Canvas table processing widgets.

	The Textable Table channel outputs a table in the internal format of
Orange Textable (usually after applying some set of transforms); it can then
be sent to another instance of Convert (in cases where it is useful to
apply transforms in distinct steps) or to an instance of the built-in
Python script widget of Orange Canvas, for accessing the content of the
table in a programmatic fashion.

	The Segmentation channel emits a segmentation with a single segment
enclosing a version of the (possibly transformed) table in tab-delimited
text format (in utf-8 encoding), which is suitable for further textual
processing using Orange Textable widgets such as Recode or
Segment for instance.

Basic interface

The basic version of the widget (see figure 1 below) is
essentially limited to the Encoding section, which allows the user to
select an encoding for the output data. This can be done for the data possibly exported to a text
file in tab-delimited format (Output File). If certain characters cannot
be converted to the specified encoding (for example accentuated characters in
the ASCII encoding), they are automatically replaced by corresponding HTML
entities (for example é for é).

[image: Basic interface of the Convert widget]

Figure 1: Convert widget (basic interface).

The Export section allows the user to export a version of the
(possibly transformed) table in tab-delimited text format, either to a text
file (Export to file) or to the clipboard (Copy to clipboard), in
order to paste it to a spreadsheet opened in a third-party program for
instance. In the former case, the Output file drop-down menu (section
Encoding) is used to indicate which encoding the data should be converted
to before being saved; typically, except for a limit imposed by the further
processing planned for the saved data (for example by a specific data analysis
program), we will seek to keep here the maximum amount of information by
specifying either the original encoding of the data, or a more general
encoding (a variant of Unicode for example). Note that when the data are
copied to the clipboard, the utf-8 encoding is used by default (regardless of
what has been selected in the Encoding section).

Advanced interface

The advanced version of the Convert widget (see figure 2 below) contains an additional section (Transform) allowing
the user to apply a number of standard modifications to the incoming table.
The different operations defined in this section are applied to input
data in the order in which they appear in the interface, top to bottom.
The modified data can then be emitted on output connections or exported
(either to a file or to the clipboard).

[image: Advanced interface of the Convert widget]

Figure 2: Convert widget (advanced interface).

The Sort rows by column checkbox triggers row sorting. If it is selected,
the column headers of the table appear in the drop-down menu directly on the
right and the user can thus select the column on the basis of which the rows
will be sorted. If the Reverse box on the right of the drop-down menu
is checked, rows will be sorted by decreasing value.

Sort columns by row controls in a similar way column sorting. It should be
noted in this case that the first column (containing row headers) will always
stay in the same position; the sorting only affects the following columns. To
sort the columns based on the header row, you must select the first option in
the Sort columns by row drop-down menu in the right. It will typically
contain a name predefined by Orange Textable but which does not appear in the
table (__unit__ if it is a contingency table of PivotCrosstab type such as
produced by the Count widget, and the generic header __col__ in
every other case).

The Transpose checkbox allows the user to transpose the table, which
means invert its rows and columns. This option is only available for
PivotCrosstab type contingency tables.

The Normalize checkbox triggers the normalization of the table (in a
rather loose sense of the term); it is only applicable for PivotCrosstab
type contingency tables. If it is selected, the user can choose in the
drop-down menu directly on the right whether the normalization should be
applied by rows (rows) or by columns (columns); the Norm drop-down
menu allows the user to select the type of normalization, either L1
(division by the sum of the row/column) or L2 (division by the root of the
sum of the squares of the row/column).

Three more operations (which are not usually classified as normalizations in
the strict sense of the term) can be selected in the drop-down menu, each of
which deactivates the Norm drop-down menu on the right:

	In quotients mode, the count stored in each cell of a contingency table
(of PivotCrosstab type) is divided by the corresponding “theoretical”
count under the hypothesis of independence between table rows and columns.
This quotient is superior to 1 if the row and the column in question are in
a mutual attraction relation, inferior to 1 in case of repulsion between the
row and the column, finally equal to 1 if the row and column do not repulse
nor attract each other particularly.

	In TF–IDF mode, the count stored in each cell of a contingency table
(of PivotCrosstab type) is multiplied by the natural log of the ratio of
the number of rows (i.e. contexts) having nonzero frequency for this column
(i.e. unit) to the total number of rows.

	In presence/absence mode, counts greater than 1 are replaced by the
value 1, so that the resulting table can contain only 0’s and 1’s.

The common property of all operations available in the Normalize drop-down
menu is that they preserve the original dimensions of the input contingency
table. On the contrary, the Convert to checkbox (only applicable for
PivotCrosstab type tables) allows the user to trigger the application of
transforms which actually modify the dimensionality of the table :

	In document frequency mode, a new contingency table is created, which
giver, for each column (i.e. unit) the number of distinct rows (i.e.
contexts) that have nonzero frequency (hence the resulting table contains
a single row).

	In association matrix mode, a new symmetric table is constructed, where
each cell gives a measure of the (Markov) associativity between a pair of
columns (i.e. units) in the original contigency table: two columns are thus
strongly associated if they have similar profiles of attraction/repulsion
with rows (i.e. contexts). Selecting this mode activates the Bias
drop-down menu on the right, which allows the user to select between three
predefined ways of weighing the contributions of high versus low frequencies
in this computation: frequent emphasizes strong associations between
frequent units; none provides a balanced compromise between frequent and
rare units; rare emphasizes strong associations between rare units (note
that in this particular case, values greater than 1 express an attraction
and values lesser than 1 a repulsion) 2.

It is worth mentioning that the Normalize and Convert to checkboxes
are mutually exclusive and deactivate one another.

Finally, the Reformat to sparse crosstab checkbox allows the user to
convert a contingency table from the PivotCrosstab format to the
WeightedFlatCrosstab or from IntPivotCrosstab to IntWeightedFlatCrosstab
(see the Table formats section above). In turn, data in
IntWeightedFlatCrosstab format can be converted to FlatCrosstab by further
selecting option Encode counts by repeating rows; the latter option is
only available when dealing with tables containing integer values.

Compared to its basic version (see Basic interface above), the advanced
version of the Export section offers two extra controls. The Column
delimiter drop-down menu allows the user to select the column separator that
will be inserted between cell values when exporting a table in text format;
possible choices are tabulation (t), comma (,), and semi-colon (;).
The Output Orange headers checkbox allows the user to indicate if the
output should include every header line of the format .tab specific to
Orange Canvas (Output Orange headers)–which is useful only for
re-importing the exported table using the built-in File widget of Orange
Canvas (and in fact often necessary in that case). Both parameters (Column
delimiter and Output Orange headers also apply to the data sent on the
Segmentation output channel)

The Send button triggers data emission to the output connection(s) (see
Output channels above). When it is selected, the Send automatically
checkbox disables the button and the widget attempts to automatically send
data at every modification of its interface or when its input data are
modified (by deletion or addition of a connection, or because modified data is
received through an existing connection).

The informations generated below the Send button indicate the number of lines and columns in the output
table, or the reasons why no table is emitted (no input data).

Messages

Information

	Data correctly sent to output: table has <n> and <m> columns.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically checkbox
has not been selected, so the user is prompted to click the Send
button (or equivalently check the box) in order for computation and data
emission to proceed.

	No data sent to output yet: no input table.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

See also

	Cookbook: Display table

	Cookbook: Export table

Footnotes

	1

	IntPivotCrosstab is in turn a subtype of PivotCrosstab (and
similarly IntWeightedFlatCrosstab is a subtype of
WeightedFlatCrosstab), whose specificity is to be limited to integer
values.

	2

	For more details on the calculation of Markov associativities, see
Bavaud F. and Xanthos A. (2005). Markov associativities. Journal of
Quantitative Linguistics, 12:123–137. Details on the effect of the
bias parameter can be found in Deneulin, P., Gautier, L., Le Fur,
Y., and Bavaud, F. (2014). Corrélats textuels autour du concept de
minéralité dans les vins. In Actes des 12èmes Journées
internationales d’analyse statistique des données textuelles (JADT
2014), pp. 209–223; the predefined values of this parameter
(frequent, none, and rare) correspond respectively to
values 1, 0.5 and 0 of parameter alpha in the above cited reference.

Message

[image: _images/Message_54.png]
Parse JSON data in segmentation and use them to control other widgets.

Signals

Inputs:

	Segmentation

Segmentation containing a single segment with the JSON data to be parsed

Outputs:

	Message

JSONMessage object that can be sent to other widgets

Description

This widget inputs a segmentation containing a single segment whose content
is in JSON [http://www.json.org/] format. After validation, the data are
converted to a JSONMessage object and emitted to the widget’s
output connections. Provided that the data conform to one of the formats
described in section JSON im-/export format, the
JSONMessage object can be sent to an instance of the corresponding widget
(either Text Files, URLs, Recode, or Segment) and
used to control its behavior remotely.

[image: Interface of the Message widget]

Figure 1: Interface of the Message widget.

The widget’s interface offers no user-controlled option (see figure 1 above).

The Send button triggers the emission of a JSONMessage object to the
output connection(s). When it is selected, the Send automatically checkbox
disables the button and the widget attempts to automatically emit a
segmentation when its input data are modified (by deletion or addition of a
connection, or because modified data is received through an existing
connection).

The informations generated below the Send button indicate the number of items
present in the parsed JSON data, or the reasons why no JSONObject can be
emitted (no input or invalid data, input segmentation containing more than one
segment).

Messages

Information

	Data correctly sent to output: <n> items.

	This confirms that the widget has operated properly.

	Settings were (or Input has) changed, please click ‘Send’ when ready.

	Settings and/or input have changed but the Send automatically checkbox
has not been selected, so the user is prompted to click the Send
button (or equivalently check the box) in order for computation and data
emission to proceed.

	No data sent to output yet: no input segmentation.

	The widget instance is not able to emit data to output because it receives
none on its input channel(s).

	No data sent to output yet, see ‘Widget state’ below.

	A problem with the instance’s parameters and/or input data prevents it
from operating properly, and additional diagnostic information can be
found in the Widget state box at the bottom of the instance’s
interface (see Warnings and Errors below).

Warnings

	Input segmentation contains more than 1 segment.

	The input segmentation must contain exactly 1 segment.

Errors

	JSON parsing error.

	The input JSON data couldn’t be correctly parsed. Please use a JSON
validator to check the data’s well-formedness.

See also

	Reference: Text Files widget,
Remote control

	Reference: URLs widget, Remote control

	Reference: Segment widget,
Remote control

	Reference: Recode widget, Remote control

	Reference: JSON im-/export format

JSON im-/export format

Beyond a restricted number of sources, substitutions, or regular expressions,
it becomes tedious to configure instances of widgets Text Files,
URLs, Recode, and Segment using their advanced interface.
To alleviate this issue, these widgets enable the user to import or export
manually edited configuration lists in JSON [http://www.json.org/] format
as described in the following sections.

	Generalities

	File list

	URL list

	Substitution list

	Regular expression list

Generalities

The general format of JSON configuration files is the following:

[
 {
 "key_1": value_1,
 "key_2": value_2,
 ...
 "key_N": value_N
 },
 ...
 {
 "key_1": value_1,
 "key_2": value_2,
 ...
 "key_N": value_N
 }
]

NB:

	the file must be encoded in utf-8

	the whole file is included between square brackets [...]

	each entry of the list is included between braces { ... } and separated
from the next by a coma

	each entry contains a list of key–value pairs separated by comas, in an
arbitrary order

	key and value are separated by a colon :

	the key is always a string between double quotation marks "..."

	the value may be a string between double quotation marks, or one of the
Boolean keywords true and false

	inside each string, the backslash \ and the double quotation marks "
must be preceded (“escaped”) by a backslash; line break and tabulation are
obtained with n and t respectively; the notation uDDDD (where each D
represents a digit) is accepted for Unicode characters.

	Certain keys have a default value and are thus optional; the others are
compulsory.

File list (Text Files widget)

The keys (and associated values) for the file lists are the following:

	Key

	Type

	Default

	Value

	Remark

	path

	string

	—

	file path (absolute or relative)

	be careful to escaping the backslash

	encoding

	string

	—

	file encoding

	cf. Python doc (codecs) [http://docs.python.org/2/library/codecs.html#standard-encodings]

	annotation_key

	string

	—

	annotation key

	—

	annotation_value

	string

	
	annotation value

	—

Example:

[
 {
 "path": "data\\Balzac\\Eugenie_Grandet.txt",
 "encoding": "iso-8859-1",
 "annotation_key": "auteur",
 "annotation_value": "Balzac"
 },
 {
 "path": "data\\Balzac\\Le_Pere_Goriot.txt",
 "encoding": "iso-8859-1",
 "annotation_key": "auteur",
 "annotation_value": "Balzac"
 },
 {
 "path": "data\\Daudet\\Lettres_de_mon_moulin.txt",
 "encoding": "iso-8859-15",
 "annotation_key": "auteur",
 "annotation_value": "Daudet"
 },
 {
 "path": "data\\Daudet\\Tartarin_de_Tarascon.txt",
 "encoding": "iso-8859-15",
 "annotation_key": "auteur",
 "annotation_value": "Daudet"
 }
]

URL list (URLs widget)

The keys (and associated values) for the URLs lists are the following:

	Key

	Type

	Default

	Value

	Remark

	url

	string

	—

	file url (absolute)

	be careful to include the indication http://

	encoding

	string

	—

	file encoding

	cf. Python doc (codecs) [http://docs.python.org/2/library/codecs.html#standard-encodings]

	annotation_key

	string

	—

	annotation key

	—

	annotation_value

	string

	
	annotation value

	—

Example:

[
 {
 "url": "http://www.imsdb.com/scripts/Alien.html",
 "encoding": "iso-8859-1",
 "annotation_key": "genre",
 "annotation_value": "sci-fi"
 },
 {
 "url": "http://www.imsdb.com/scripts/Pulp-Fiction.html",
 "encoding": "iso-8859-1",
 "annotation_key": "genre",
 "annotation_value": "crime"
 }
]

Substitution list (Recode widget)

The keys (and associated values) for the file lists are the following:

	Key

	Type

	Default

	Value

	Remark

	regex

	string

	—

	regular expression

	be careful to escape the slashes and backslash

	replacement_string

	string

	replacement string

	—

	

	ignore_case

	Boolean

	false

	option -i

	cf. Python doc (re.UNICODE) [http://docs.python.org/library/re.html#re.UNICODE]

	multiline

	Boolean

	false

	option -m

	cf. Python doc (re.MULTILINE) [http://docs.python.org/library/re.html#re.MULTILINE]

	dot_all

	Boolean

	false

	option -s

	cf. Python doc (re.DOTALL) [http://docs.python.org/library/re.html#re.DOTALL]

	unicode_dependent

	Boolean

	false

	option -u

	cf. Python doc (re.IGNORECASE) [http://docs.python.org/library/re.html#re.IGNORECASE]

Example:

[
 {
 "regex": "<.+?>",
 "replacement_string": ""
 },
 {
 "regex": "(behavi|col|neighb)our",
 "replacement_string": "&1or",
 "ignore_case": true,
 "unicode_dependent": true
 },
 {
 "regex": "a (\\w+) of mine",
 "replacement_string": "my &1",
 "unicode_dependent": true
 }
]

Regular expression list (Segment widget)

The keys (and associated values) for the file lists are the following:

	Key

	Type

	Default

	Value

	Remark

	mode

	string

	—

	“split” or “tokenize”

	—

	regex

	string

	—

	regular expression

	be careful to escape the backslash

	ignore_case

	Boolean

	false

	option -i

	cf. Python doc (re.UNICODE) [http://docs.python.org/library/re.html#re.UNICODE]

	multiline

	Boolean

	false

	option -m

	cf. Python doc (re.MULTILINE) [http://docs.python.org/library/re.html#re.MULTILINE]

	dot_all

	Boolean

	false

	option -s

	cf. Python doc (re.DOTALL) [http://docs.python.org/library/re.html#re.DOTALL]

	unicode_dependent

	Boolean

	false

	option -u

	cf. Python doc (re.IGNORECASE) [http://docs.python.org/library/re.html#re.IGNORECASE]

	annotation_key

	string

	—

	annotation key

	—

	annotation_value

	string

	
	annotation value

	—

Example:

[
 {
 "mode": "Tokenize",
 "regex": ".",
 "dot_all": true,
 "annotation_key": "type",
 "annotation_value": "other"
 },
 {
 "mode": "Tokenize",
 "regex": "\\w",
 "ignore_case": true,
 "unicode_dependent": true,
 "annotation_key": "type",
 "annotation_value": "consonant"
 },
 {
 "mode": "Tokenize",
 "regex": "[aeiouy]",
 "ignore_case": true,
 "annotation_key": "type",
 "annotation_value": "vowel"
 },
 {
 "mode": "Tokenize",
 "regex": "[0-9]",
 "annotation_key": "type",
 "annotation_value": "digit"
 }
]

Index

 _images/ExtractXML_36.png
¥

_images/ExtractXML_54.png
KT

_images/Display_36.png

_images/Display_54.png

_images/Intersect_54.png

_images/count_occurrences_other_smaller_segmentation.png
segmentation

inwords N

—@

segmentation

/ in letters

TextField Segment
i Count. 21|
- Units

Segmentation: letters. |
Annotation key: (none) =
Sequence length:. 1 =
Intra-sequence delimiter: #
- Contexts.

Mode:. [Contaning segmentation |
Segmentation: [words. |
Annotation key: (none) =
I Merge contexts

Count

_images/Length_54.png

_images/count_tagging_rows_annotations_language.png
Contexts

Segmentation:
Anmotation key:

I~ Merge contexts:

[Contairing segmentation ~]

texts. =

_images/count_tagging_rows_annotations.png
[E Count
Units

Segmentation:

Annotation key:

Sequence length:

Intra-sequence delimiter:

Letters

(none)

>

Contexts
Mode: Containing segmentation =
Segmentation: Texts -
Annotation key: input_label -
[[] Merge contexts
O Send

0 Table with 28 occurrences sent to output.

_images/count_unit_frequency_gradually.png
Text Field ‘Segment Count

[Count 2|

- Units

Segmentation: fters <

Amotaton key: [(rone) =

_images/count_unit_fequency_globally.png
TextField ‘Segment Count
2
Segmentation: = -
Anmotaton key: [(rone) =
Sequence length: 1 =

Intra-sequence delmiter: #

- Contexts.
Mode: [No context <
info
Status: Data correcty sent to output.

Total counts 14,

_images/display_basic_interface.png
v Display
[] Advanced settings
Navigation

Go to segment:

»

“

Text Field

Segment #1 [3:1-47]

*

a simple example

*

a second simple example

(] 1 segment sent to output.

_images/display_advanced_interface.png
v Display - O X

Advanced settings

Formatting

*

a simple example

Apply custom formatting

Header: *

asecond simple
Format: %(__content_)s example >

Segment delimiter: \n

Footer:

Export

File encoding: utf -

Export to file Copy to dlipboard

(~ segment sent to

Send automatically oot

_images/display_merged_annotations_example.png
v Display

[] Advanced

settings

Navigation

Go to segment:

»

“

Merge

Segment

#1 [1:1-17]

language

En

num

1

atext in English

Segment

#2 [2:1-23]

language

En

num

2

another text in English

Segment

#3 [3:1-21]

language

Fr

num

E

un texte en francais

(] 3 segments sent to output.

_images/display_example.png
Flaubert

v Display - O
[] Advanced settings

Navigation

Go to segment: 1

>

Flaubert

Segment #1 [1:1-1073]

Chapitre 1 - LE FESTIN

Cétait & Mégara, faubourg de Carthage, dans les
jardins d'Hamilcar.

Les soldats qu'il avait commandés en Sicile se
donnaient un grand festin pour célébrer le jour
anniversaire de la bataille d'Eryx, et comme le maitre
était absent et quiils se trouvaient nombreu, ils
mangeaient et ils buvaient

(~ segment sent to output.

_images/count_mode_sliding_window_example.png
Contexts

Window size:

Sliding window

>

_images/count_mode_left_right_neighborhood_example.png
Contexts

Left context size:

Right context size:

Unit position marker:

Treat distinct strings as contiguous

Left-right neighborhood

>

>

_images/Count_54.png

_images/DataTable.png

_images/Cooccurrence_54.png

_images/Count_36.png

_images/count_example.png
[E Count
Units

Segmentation:
Annotation key:
Sequence length:

Intra-sequence delimiter:

Contexts

O

Q Table with 14 occurrences sent to output.

Letters

(none)

>

No context

Send

_images/cooc_secondary_units_example.png
Secondary units.

|| Use secondary units
Segmentation:

Annotation key:

_images/count_frequency_adjacent_contexts.png
Text Field ‘Segment Count

B Count. 2|
s
Segnentation: == E
Armotaton key: =) E

Left context size: 1 =
Right context size: o =
Unit positon marker: _

_images/count_example_schema.png
& @ @® =

Text Field Segment Count Data Table

_images/count_mode_containing_segmentation.png
Contexts

Mode:

Segmentation:

Annotation key:

[[] Merge contexts

Containing segmentation

Segment

(none)

_images/count_merging_units_annotations.png
Segmentation:

Anmotation key:

Intra-sequence delmiter:

_images/count_mode_containing_segmentation_example_schema.png
letters

® ®—=

Text Flel words Count Data Table

_images/count_mode_containing_segmentation_example.png
[E Count
Units

Segmentation:
Annotation key:
Sequence length:

Intra-sequence delimiter:

Contexts

Mode:
Segmentation:
Annotation key:

[[] Merge contexts

O

Q Table with 14 occurrences sent to output.

Letters

(none)

>

Containing segmentation

words

(none)

Send

_images/cooc_mode_containing_segmentation_example.png
Contexts

Mode

Segmentation:

Annotation key:

Containing segmentation

Segment

(none)

_images/cooc_example.png
= .
Annotation key: (none) he
Sequence length: 1 <
N —
——

Annotation key: (none) s
oo
= S
-
‘Settings were changed, please
S

==

[Compute automatically

_images/cooc_mode_sliding_window_example.png
Contexts

Window size:

Sliding window

>

_images/goal_exercise_merge.png
Merge (1)

Segment #1 [1:1-16]

a simple example

Segment #2 [2:1-16]

another example

Segment #3 [2:1-16]

another example

_images/intersect_example.png
2 Intersect

[] Advanced settings

Intersect

Mode:
Source segmentation:

Filter segmentation:

O

@ 50530 segments sent to output.

Exclude

stopwords

Send

_images/include_exclude_units_based_on_pattern.png
segmentation

in letters \

—@—@®

TertField Segment Select
elect 20|

T~ Advanced settings

- Select

Mode: [Exchude =
Anmotation key: [(rone) =
Regex: B

[~ Options.

Output segmentation label: sclected_data

_images/merge_advanced_example.png
8 Merge

Options

Import labels with key:

Auto-number with key:

[] Copy annotations

[] Fuse duplicates

(~ segment sent to output.

input_label

Send automatically

_images/intersect_example_schema.png
UDHR Words ‘ ’ ‘ °

A Intersect Display
®-@

Text Field (1) Stopwords

[ﬂuur

_images/merge_annotations_example_schema.png
Merge

_images/merge_annotations_example.png
8 Merge -

Options

mport labels with key: language

Auto-number with key: num

Copy annotations

Fuse duplicates

Send automatically

Q; segments sent to output.

_images/merge_example_schema.png
B Text String — [m] X

a simple example
B Text String2 — m] X {%}
another example

Text String ‘: : e
{E} Mel ge Display
Text String2
| o
© .

Send automatically

Q. segment (16 characters) sent to output.

_images/merge_example.png
8 Merge -

Options
[] Import labels with key: language
[Auto-number with key: num

[] Copy annotations

[] Fuse duplicates

Send automatically

9, segments sent to output.

_images/merge_several_texts.png
Text Field

Text Field (1)

Merge

tere

T~ Advanced settings
- Ordering

Move Uy

Move Down.

[~ Options.

Output segmentation o

1% import labels ith key:

corpus.

1 e

te

_images/display_table_data_table_interface.png
sSegment
TertField
21|
table (Orange table) |
T | _leR_ [_key_segment_[_right_
Fo FRE In' hole nthe round there Ived a habbit +Notanasty, irty, nethole, fled w
2 2t itto st down on o toeat:twas hobist “hoe, and that means comfort, Ithad @
P ERES dlots of pegs for hats and coats - the habbit was fond of istors, The el wound
0 CE on another No going upstars for the hobist +bedrooms, batrvooms, cellrs, pantries
5 |5 1 ‘eyond, sloping down to the river. This ‘hobbit 'was a very well-to-do hobbit, and his n
EH CERE ver, Tis hobbt was 2 very wel-to-do hobist and his name was Baggins. The Baggnse
77 the end. The mother of our partiaar habbit 826230; whatis 2 habbit? I suppose habbits
E e er ofour paricuar hobbit 826230; whatis 3 hobbit 21 suppose hobits need some descrptio

_images/display_table_convert_interface.png
2lxi

[Advanced settings
Transform

T~ Sort rows by column: =] T Reverse
T~ Sort columns by row: =] T Reverse

[V Transpose

I~ Normaize: roms. =] Nom: []
I~ Convert to: ssocaton matrix o] as: [Femene o]

I~ Reformat to sparse crosstab

I~ | Encode counts by repeating rows

_images/exclude_segments.png
Original text

¢

Text Field

Text Field (1)

?

Stop words list

.

)
?rm!rm!

Segment

¥

Segmentation in words

A

Segment (1)

Intersect

Intersect 21|

T~ Advanced settings
- Intersect

ode: E—
S C—
Sorcesmotatenkey: Co—
e segnentaton: Err—

[~ Options.

Output segmentation label: fitered_data

info

Status: Data correctly sent to output.
Data contains 379 segments.

_images/display_xml_annotations_example.png

_images/export_text_content.png
¥ Advanced settings

- Formatting

Text Field

—@

Display

2%

¥ Apply custom formatting
Header:
Format:

Segment deimiter:

—
n
E—

s

Copy to cipboard

[~ Navigation

o to segrent:

2 simple example

_images/export_table_convert_interface.png

_images/extract_xml_basic_example.png
@ Extract XML
[] Advanced settings

XML Extraction

XML element:

[] Remove markup

@, segment sent to output.

aut

Send automatically

_images/extract_xml_advanced_example.png
“/> Extract XML - [m] X

XML Extraction

[] 1mport element with key:

[] Remove markup

[Prioritize shallow attributes

Conditions

type poem [u]
Remove

Clear All

- —

[1gnore case (i) Unicode dependent (u)
[Muttiine (m) [pot matches all (s)

Add

Options
[Auto-number with key: ~ num

Import annotations

[Fuse duplicates

Send automatically

© 0 segment sent to output.

_images/filter_segments_based_on_frequency.png
—@®@—@®

Text Field Segment Select

Select 20|

¥ Advanced settings

Select

Wethod: =r—|
J— Co—
e Er—
% M. conts EO—
e —

_images/extract_xml_example.png
@ Extract XML
[] Advanced settings

XML Extraction

XML element:

[] Remove markup

Send automatically

Q; segments sent to output.

_images/display_merged_example.png
v Display
[] Advanced settings
Navigation

Go to segment:

»

“

Merge

Segment #1 [1:1-16]

a simple example

Segment #2 [2:1-16]

another example

Q. segments sent to output.

_images/Select_36.png

_static/down-pressed.png

_static/comment.png

_images/TextField_36.png

_images/Select_54.png

_static/down.png

_images/TextFiles_36.png

_static/minus.png

_images/TextField_54.png

_static/file.png

_images/Preprocess_54.png

_static/ajax-loader.gif

_images/Preprocess_36.png

_images/variety_widget.png
W Variety - [m]
units

‘Segmentation:

Annotation key: (none)
‘Sequence length 1

Weigh by frequency
Categories
Measure variety per category
Annotation key: (none)
Weigh by frequency

Dynamically adjust subsample size

contexts
Mode: No context
Resampling
[] Apply Resampling
‘Subsample size: 1
Number of subsamples: 100

o

o

o

O Send

A\ Tnput has changed, please click 'Send’ when ready.

_images/Recode_54.png
a-b

_static/comment-bright.png

_images/Recode_36.png

_images/Segment_54.png

_images/Segment_36.png

_static/comment-close.png

_images/text_files_basic_example.png
[Text Files

[] Advanced settings
Source
File path: ltrie\goodsocfull_1937.txt
Encoding: utf
O Send

Q. segment sent to output (747233 characters).

_images/Merge_36.png

_images/titus_andronicus_schema.png
Message,

@@ @

Segment(1) Segment(4) Segment(:

Toggle Include/exclude to

switch between content
words and stopwords.

‘ Distance type and

parameters. \

documentterm
matrix (or not).

istance Map

Data Table

_images/Length_example.png
= Length
Units

Segmentation:

Averaging

Average over segmentation:

[[] Compute standard deviation

Contexts

O

© tabie sentto output.

Text Field

Text Field

No context

Send

_images/titus_andronicus_map.png
32.80

0.00

€ BUOS ‘g 1y
7 2u205 ‘G oy
T 2205 ‘G oy
{ 2US f oy
€ 2ua05 ' oY
7 2u205 ' oy
T ou205 ' oy
7 2uR05 '€ oy
T o205 '€ 3oy
{ 2US ‘7 oy
€ 2U205 'Z oY
7 2u205 'Z oy
T ou205 'Z o7
T 2205 ‘T 327

AN NN S N6
VLLVVLVVVVVVO O
cccccccccccccoc
0000000000000
QOOOOO00000000
DNNNNNNNNNNNNN
NN LA
S8 88888888E
CCLCLCLLLLLLILILITT

_images/Message_54.png

_images/urls_basic_example.png
A URLs - [} X

[] Advanced settings

Source
RL: s/ corpus by edu/cocal
Encoding: utfs -
O Send

@ 1 segment sent to output (1871 characters).

_images/Merge_54.png

_images/urls_advanced_example.png
A URLs - [} X

Advanced settings
o
e
http://www.natcorp.ox.ac.uk/ (au|
s
e
Clear All
coon
< > | | tmport st
e
Encoding: utfs. -

B —

Add

s
e~ E—

[Auto-number with key: ~ num

O Send

@ 2 segments sent to output (12009 characters).

_images/solution_exercise_merge.png
Text String E é

®)—@

Text String2 Merge (1) D\spla

Merge

_images/solution_exercise_intersect.png
® @

TextField (1) ‘Segment (1)

®—©®
Intersect Display

_images/text_field_example.png
E Text Field - [m]

N
a simple example

*

a second simple example]

Send automatically

Q. segment (47 characters) sent to output.

_images/tagging_rows_annotations_schema.png
BRe

E
English text 1
Letters
% ‘
Count Convert Data Tab\e
English text 2 Texts

French text

_images/text_files_advanced_example.png
Text Files (0% co.. — [m] X

Advanced settings
E—
s g e s Wove Up
naek.oxs (auro-devece)
e
o
Clear All
Eport it
mport st
Flepan: [][erowse
Encoding: utfg A

T —

Add

s
. S—

[Auto-number with key: ~ num

O Send

@ 2 segments sent to output (1992463 characters).

_images/text_field_xml_example.png
Text Field -

<w type="DET">some</w>

<w type="NOUN">words</w>
<w type="PREP">with</w>

<w type="NOUN">XML</w>
<w type="NOUN">markup</w>

Send automatically

Q. segment (120 characters) sent to output.

_images/category_widget.png
& Category

Units
Segmentation: Text Field -
Annotation key: (none) -
Sequence length: 1 S
Intra-sequence delimiter: #
Multiple Values
Sort by: Frequency -
Sort in reverse order
Keep only first value
Value delimiter:
Contexts
Segmentation: Text Field -
Annotation key: (none) -
O Send

© tabie sentto output.

_images/context_mode_containing_segmentation_example.png
Contexts

Mode:

Segmentation:

Annotation key:

Containing segmentation

Segment

(none)

Max. length:

50

>

_images/context_example.png
=N 2

- Units

Segmentation: Jkey _segments -
Anmotation key: (o) B

I~ Separate ammotation.

Contexs
Mode: Neighboring segments ¥/
St = -
J— CE—|
¥ Max. distance: 3 =

¥ Use colocation format

Min. frequency: 1 =
info
Status: Data correcty sent to output.
Compute

I Compute automaticaly.

_images/convert_basic_example.png
=8 Convert -

[[] Advanced settings
Encoding
Output file: utf
Export
Export to file Copy to dlipboard
O Send

Q Table with 1 row and 3 columns sent to output.

_images/convert_advanced_example.png
21
7 advanced sttings
(- Tansform

T~ Sort rows by column: =] T Reverse
T~ Sort columns by row: =] T Reverse

I~ Transpose.
T~ Normalize: Jauotients =] Norm: [T 7
I~ Convert to: [Essoton matix i [|

I~ Reformat to sparse crosstab

I~ | Encode counts by repeating rows

fro-ga55-15 B
s B
Bt
Column demiter: tbuaton (9 B
I~ Incude Orange headers
Exportto fle | ‘Copy to ipboard
Status: Data coecty sent to cutput.
Table has 3 rons 2nd 9 columns.
Send

[V send automatically.

_images/convert_xml_tags_widget_interfaces.png
Text Field

<w type="noun">example </<w>

[~ Options.

e stng

Output segmentation label:

info

Status: Data correctly sent to output.

Data contains 75 characters.

ot

[V send automatically.

Extract XML

CESTTE X

T~ Advanced settings
XML Extraction

—

XML clement:

I~ Remove markup

[~ Options.
Output segmentation label:

word category.

info

Status: Settings were changed.

Please clck Send when ready.

Send

T~ Send automatically

_images/convert_lower_upper_case.png
Text Field Preprocess

_images/annotation_text_field.png
B En -

atext in English

B - O X

another text in English

=R - [m] X

un texte en francais

Q. segment (21 characters) sent to output.

_images/annotation_based_selection_schema.png
0-©®-©® @ ©® @

TextField Extract XML

_images/build_concordance_interfaces.png
Text Field

& scoment 2lxi

T~ Advanced settings

[Regex

hobbit

Segment

Context

=N 2

- Units

Segmentation: ey segments =
Anmotation key: [(rone) =

I~ Separate ammotation.

Data contains 170 segments.

ot

[V send automatically.

[~ Options.
Output segmentation label: key_segments [Contexts.
Mode: [Contaning segmentation |
e Segmentation: text_strng =
Status: Data correctly sent to output.

Anmotation key: [(rone) =

I¥ Max. length: o 5
info
Status: Data correctly sent to output.
Compute.

T~ compute automatically

_images/banner.jpg

_images/Category_54.png

_images/Context_36.png

_images/Convert_54.png

_images/Context_54.png

_images/Convert_36.png
ez

_images/a_simple_example_adjective.png

_images/a_simple_example.png

_images/a_simple_plan.png

_images/a_simple_example_annotations2.png

_images/addons_management_dialog_macosx.png
800 % Add-on Management

Add-ons

™ Orange-Bioinformatics | Refresh list |
| Orange-ModelMaps

Orange-Multitarget [Upgrade All_|
Orange-Network

Orange-NMF
Orange-Reliability
Orange-Text
Orange-Textable

Installed version: - marked for installation
Available version: 1.3a4

Open webpage

Orange Textable add-on for Orange data mi
Orange Textable

Textable is an add-on for Orange_ data mining software package. It enables users to

build data
(06 canee

_images/addons_management_dialog.png
[Orange-Mutitarget.
[Orange-etwork.

‘Orange Textable add-on for Orange data mining software package.
Orange Textable

Textable i an add-on for Orange _data miing softuare package. It enables users to buid data
tables on the basi of text data, by means of 3 flexible and intuitive:
nterface. It offers i partiuiar the folowing features:

_images/Text_field_labelling.png
1)

B Text Field

Chapitre 1 - LE FESTIN

Cétait & Mégara, faubourg de Carthage, dans les jardins
dHamilcar.

Les soldats qul avait commandés en Sicle se donnalent un
grand festin pour célébrer le jour anniversaire de la bataille
d¥Eryx, et comme le matre était absent et qu'is se
trouvalent nombreu, ifs mangealent et is buvaient

en pleine lberté.

Les capitaines, portant des cothurnes de bronze, s‘étalent
placés dans le chemin du milieu, sous un volle de pourpre &
franges d'or, qui sétendalt depuis le mur des curies jusqu'a
Ia premiére terrasse du palais ; le commun des soldats était
répandu sous les arbres, ot fon distinguait quantité de
bétiments 3 toit plat, pressoirs, celiers, magasins,
boulangeries et arsenaux, avec une cour pour les éléphants,
des fosses pour les bétes féroces, une prison pour les
‘esdlaves. Des figuiers entouraient les cuisines ; un bois de

‘sycomores se prolongeait usqu'a des masses de verdure, o1
p it acm lac toffoc i

‘Send automatically.

© 1 segment (1073 choractrs) sent to utput.

Remove

Help

Backspace

F1

B Flaubert - a

Chaptre 1 - LE FESTIN
Cétat & Mégars, faubourg de Carthage, dans s jardins
‘dHamilcar |

Les soldats quil avalt commandés en Sicle se donnalent un
grand festin pour célébrer e jour anniversaire de la batalle
dEryx, et comme le maitre éait absent et
trouvaient nombreu,ils mangeaient et s buvalent:

en pline lierts.

Les capitaines, portant des cothurnes de bronze, s'étalent
placés dans le chemin du milieu, sous un voile de pourpre &
franges d'or, qui sétendait depuis le mur des écuries jusaua
Ia premidre terrasse du palais; le commun des soldats état
répandu sous les arbres, ol fon distinguait quantité de
bétiments a tit pla, pressoirs, cellers, magasins,
boulangeries et arsenau, avec une cour pour les éiéphants,
des fosses pour les bétes féroces, une prison pour les
esciaves. Des figuies entouralent les cuisines ; un bais de
sycomores se prolongeait jusau'a des masses de verdure, ol

des grenades resplendissaient pami les touffes blanches

Send automatically

© 1 eament (1073 characters) st tocutpt.

_images/TextFiles_54.png

_static/plus.png

_images/URLs_54.png
hep

_static/up.png

_images/URLs_36.png
e

_static/up-pressed.png

_images/Variety_54.png

nav.xhtml

 Table of Contents

 		
 Orange Textable documentation

 		
 Introduction

 		
 Features

 		
 Illustration: mining Humanist

 		
 Installation

 		
 Windows installation

 		
 MacOS X installation

 		
 Configuration

 		
 Credits

 		
 How to cite Orange Textable

 		
 Textable's basics

 		
 Strings, segments, and segmentations

 		
 See also

 		
 Keyboard input, widget labelling and segmentation display

 		
 See also

 		
 Footnotes

 		
 Merging and segmenting

 		
 See also

 		
 Segmenting data into smaller units

 		
 See also

 		
 The uses of annotating segmentations

 		
 Merging and annotating

 		
 See also

 		
 From segmentations to tables

 		
 See also

 		
 Counting segment types

 		
 See also

 		
 Counting in specific contexts

 		
 See also

 		
 Tagging table rows with segments and labels

 		
 See also

 		
 Advanced topics

 		
 Converting XML markup to annotations

 		
 See also

 		
 Merging units with XML annotations

 		
 See also

 		
 A note on regular expressions

 		
 Partitioning segmentations using a regex

 		
 See also

 		
 Using a segmentation to filter another

 		
 See also

 		
 XML Annotation-based selection using a regex

 		
 See also

 		
 Cookbook

 		
 Text input

 		
 Import text from keyboard

 		
 Import text from file

 		
 Import text from internet location

 		
 Text output

 		
 Display text content

 		
 Export text content (and/or change text encoding)

 		
 Text preprocessing and recoding

 		
 Convert text to lower or upper case

 		
 Remove accents from text

 		
 Replace all occurrences of a string/pattern

 		
 Segmentation manipulation

 		
 Segment text in smaller units

 		
 Merge several texts

 		
 Include/exclude units from a segmentation based on a pattern

 		
 Filter segments based on their frequency

 		
 Create a random selection or sample of segments

 		
 Exclude segments based on a stoplist

 		
 Convert XML tags to Orange Textable annotations

 		
 Text analysis

 		
 Count unit frequency

 		
 Count occurrences of smaller units in larger segments

 		
 Count transition frequency between adjacent units

 		
 Examine the evolution of unit frequency along the text

 		
 Build a concordance

 		
 Table output

 		
 Display table

 		
 Export table

 		
 Case studies

 		
 Term frequency comparison in Melville's Moby Dick

 		
 Stylometric analysis of Shakespeare's Titus Andronicus

 		
 Reference

 		
 Text import widgets

 		
 Text Field

 		
 Text Files

 		
 URLs

 		
 Segmentation processing widgets

 		
 Preprocess

 		
 Recode

 		
 Merge

 		
 Segment

 		
 Select

 		
 Intersect

 		
 Extract XML

 		
 Display

 		
 Table construction widgets

 		
 Count

 		
 Length

 		
 Variety

 		
 Cooccurrence

 		
 Context

 		
 Category

 		
 Conversion/export widgets

 		
 Convert

 		
 Message

 		
 JSON im-/export format

 		
 Generalities

 		
 File list

 		
 URL list

 		
 Substitution list

 		
 Regular expression list

_images/select_example_schema.png
0—@®

TextFiles ‘Segment

_images/select_example_reset_signals_dialog.png
21x

./l S et Segrentaton segentaion. OO
vt gt T Sgnentaton epmeniaton

Discarded data
_textable.widgets.LTTL Segmentaton. Segmentation

D

_images/settings_menu_windows.png
S
t | Optons Help

l show output view
Show Report View

_images/settings_menu_macosx.png
O About Orange

File

Preferences...
Services

Hide Orange
Hide Others
Show All

Quit Orange

Edit

3,
>
%H
X®H

®Q

View

_images/select_advanced_regex_example.png
Annotation key:

Regex:

[] 1gnore case (i)
[] muttiine (m)

Options
[[] Auto-number with key:

Copy annotations

= -
Include A
(none) S

Unicode dependent (u)
[] oot matches al (s)

num

O

Send

© oprmemeern

_images/segment_text.png
—@

Text Field Segment

- Options.

Output segmentation label: ines.

_images/select_advanced_threshold_example.png
Select

Method:

Annotation key:

Threshold expressed as:

in. proportion (%):

Max. proportion (%):

Threshold

(none)

Proportion

>

10

>

_images/select_advanced_sample_example.png
Select

Method:

Sample size expressed as:

Sample size:

>

_images/select_annotation_key.png
B9 select

[] Advanced settings
Select

Mode:
Annotation key:

Regex:

O

Exclude

type

~(DET|PREP)$

Send

& Settings were changed, please click ‘Send’ when ready.

_images/select_annotation_example.png
B9 select

[] Advanced settings
Select
Mode: Exclude
Annotation key: (none)
Regex: ~w{1,3}$
O Send

(~ segment sent to output.

_images/select_example.png
R9 select

[] Advanced settings
Select

Mode:
Annotation key:

Regex:

O

@, segment sent to output.

Send

Include

(none)

intellectuels

_images/segment_advanced_example.png
Segment - O X

‘Advanced settings
Regexes
(%) liberte [u] Move Up
Move Down
Remove
Clear All
Export List
Import List
Mode: Tokenize -

s —
P —

[1gnore case (i) Unicode dependent (u)
[Muttiine (m) [pot matches all (s)

Add

Options
[Auto-number with key: ~ num

Import annotations

[Fuse duplicates

Send automatically

© 0 segment sent to output.

_images/segment_example_schema.png

_images/segment_example.png
BR Segment - [m}

[] Advanced settings
Segment type

Segment into words

Send automatically

9, segments sent to output.

_images/preprocess_advanced_example.png
E¢ Preprocess
Options
[] Transform case: to lower
[] Remove accents

[] Copy annotations

Send automatically

& Widget needs input.

_images/preprocess_caveat_schema_without.png
TextField (1) ‘Segment

_images/preprocess_caveat_schema_right.png
‘Both segmentations entering Count
refer to the same set of strings (the new
msmmmss.mmm

OH@
©n
2

Text Field (1) ‘Segment

_images/random_sample_Sample_mode.png
—@®—@®

TextField Segment Select

Select 2%

¥ Advanced settings

- Select

Method: [Sampe =
Sample size expressed as: [Count =]
Sample sze: 500 =

R —
Output segmentation label: sample
I~ Auto-number with key: um

[Copy annotations

_images/preprocess_caveat_schema_wrong.png
The segmentation emitted by Merge
refers to the two strings imported by
=] e Text Fieldnstances, whereas...

Text Field (1) Preprocess ‘Segment

. the segmentation emitted by
‘Segment refers to the two NEW
strings created by Preprocess
(and so does the segmentation
emitted by Preprocess).

_images/recode_basic_example.png
@b Recode

[] Advanced settings
Substitution

Regex:

Replacement string:

~MI>1+(m)

Send automatically

Q. segment sent to output (no replacements performed).

_images/recode_advanced_example.png
&b Recode - [m] X

Substitutions
<> ta] [Fhioveup
2 (Ww#) of mine)

(behavi|colineighblour [u] | Move Down
Remove
Clear All
Export List

< > | | mport List

Regex: [(behavi| col | neighb)our
e E—

[[Jsgnore case () [] unicode dependent (u)
[Muttiine (m) [pot matches all (s)

Add

Options

Copy annotations

Send automatically

@ 1 segment sent to output (no replacements
performed).

_images/remove_accents_from_text.png
Text Field Preprocess

T~ Advanced settings

Preprocessing
I~ Transform case: foloner

¥ Remove accents.

_images/recommended_settings.png
(2 preferences R

General | ouput |
Nodes 7 Enable nod animations
= | Msmemmrmommms
Open quickmenu an ¥ O doible cic
7 onright dick
7 0n spacekey press
I~ onany keypress
On startup [Show splash screen
I~ Show wekcome sareen
Toolbox 7 Oriy one tab can be open ata time

_images/replace_all_occurrences_of_string_pattern.png
Text Field Recode

aorecode R

T~ Advanced settings
Substitution

Regex: our

Replacement string: o

_images/message_example.png
© Message - O X

O Send

& Input has changed, please dlick ‘Send' when
ready.

_images/merging_units_annotations_schema.png
0-©®-@® ©® 0O

Text Field Extract XML

_images/mining_humanist_results.png
table (Orange table) |

et [t compung | g

1 [1087-1088 155 o
2 [1sms-1980 104 o
3 |1080-19%0 7 o
4 [1900-1991 105 o
5 [1s011002 m o
6 |1s92-1003 m o
7 [1s03-1904 4 o
8 15941005 » o
5 |1s95-1906 28 o
10 1996-107 2% o
11 1997-1908 196 2
12| 1998-1909 i) o
13 1995-2000 25 o
14 20002001 254 3
15 | 2001-2002 2 1
16 | 20022003 188 3
1720032004 195 0
18| 20042005 %4)
19| 20052006 B m
20 2006-2007 20 21
21| 2007-2008 27 186

_images/mining_humanist_recode.png
—
Output segmentation label: [archives.

Info
Status:

ot

[V send automatically.

Data correcty sent to output.
Data contains 21 segments.

_images/moby_dick_freq_ahab.png
Scatter Plot.

Main | Settngs |

Bl e
[@ o]
e
e
) -

|- Additonal Point Properties ———————

Pointlabel:
(o labets) =
Point shape:
Game shape) <
Point sz

[(Same size) B

- Optinization dislogs ——————————

ViRank

Zoom /Select—————————————

[« lof ||

Ahab

0014

0012

001

0.008

0.006

0.004

0.002

21x

Save Graph Report

_images/mining_humanist_schema.png
1.Import annual archives from the Humanist discussion 6. Results appears

group (http://dhhumanist org/Archives/Converted_Text)) here (after standard
from 1987 to 2008. conversion).

2. Discard text lines marked as replies to
/ / other messages (those that begin with| or »).

@)@

URLs Recode

3. Segment
archives into E}% E}% 5. Count occurrences
messages, == B B of both expressions

discarding \ across time periods.
Subjectine. Segment Segment(2)

4.Identify all occurrences of expressions "Humanities
Computing" and "Digital Humanities" in messages.

_images/moby_dick_schema.png
Bl

‘Segment (2)

@)@ ()
o S

=)

Data Table

_images/moby_dick_freq_whales.png
Lscnerpot N £

o | setogs | -
- 0o]
[—
- oo
@ whale(s) < .
[Pont o
e con /| oo] . .
[P —— }
rontiae .
aors]
otmen =l =
[— : — ‘
ront g B .
) =
ont s ood) Lt
(Same size) - . L. T .
e E : . B
P S || N T s
-Zoom /Select————————————— . g g L.
a sl mlx=fl o :)
L Sy s
o 20 40 80 80 100 120

__swecwn | rewot | __context_

_images/options_addons_menu_macosx.png
_Window JO/JILITN Help

Show Output View

_images/options_addons_menu.png
[0 o= ==

Visualize

Classify

Regression

